Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras

Pub Date : 2020-01-12 DOI:10.1215/21562261-2021-0006
H. Nakajima
{"title":"Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras","authors":"H. Nakajima","doi":"10.1215/21562261-2021-0006","DOIUrl":null,"url":null,"abstract":"We prove the conjecture by Gyenge, Nemethi and Szendrői in arXiv:1512.06844, arXiv:1512.06848 giving a formula of the generating function of Euler numbers of Hilbert schemes of points $\\operatorname{Hilb}^n(\\mathbb C^2/\\Gamma)$ on a simple singularity $\\mathbb C^2/\\Gamma$, where $\\Gamma$ is a finite subgroup of $\\mathrm{SL}(2)$. We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with $\\Gamma$ at $\\zeta = \\exp(\\frac{2\\pi i}{2(h^\\vee+1)})$ are always $1$, which is a special case of a conjecture by Kuniba [Kun93]. Here $h^\\vee$ is the dual Coxeter number. We also prove the claim, which was not known for $E_7$, $E_8$ before.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2021-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We prove the conjecture by Gyenge, Nemethi and Szendrői in arXiv:1512.06844, arXiv:1512.06848 giving a formula of the generating function of Euler numbers of Hilbert schemes of points $\operatorname{Hilb}^n(\mathbb C^2/\Gamma)$ on a simple singularity $\mathbb C^2/\Gamma$, where $\Gamma$ is a finite subgroup of $\mathrm{SL}(2)$. We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with $\Gamma$ at $\zeta = \exp(\frac{2\pi i}{2(h^\vee+1)})$ are always $1$, which is a special case of a conjecture by Kuniba [Kun93]. Here $h^\vee$ is the dual Coxeter number. We also prove the claim, which was not known for $E_7$, $E_8$ before.
分享
查看原文
简单表面奇异点Hilbert格式的欧拉数与量子仿射代数标准模的量子维数
我们证明了Gyenge,Nemethi和Szendrõi在arXiv:1512066844,arXiv:5152066848中的猜想,给出了点$\operatorname{Hilb}^n(\mathbb C^2/\Gamma)$的Hilbert格式的Euler数在一个简单奇点$\mathbb C ^2/\Gamma$上的生成函数公式,其中$\Gamma$是$\mathrm{SL}(2)$的有限子群。我们从与$\Gamma$相关的量子仿射代数的标准模在$\zeta=\exp(\frac{2\pi i}{2(h^\vee+1)})$处的量子维数总是$1$的声明中推导出,这是Kuniba猜想的一个特例[Kun93]。这里$h^\vee$是双Coxeter数。我们还证明了以前$E_7$、$E_8$不为人所知的索赔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信