Yanhong Liu, Hui Lv, Bin Wang, Deyun Yang, Qiang Zhang
{"title":"Modelling and analysis of haemoglobin catalytic reaction kinetic system","authors":"Yanhong Liu, Hui Lv, Bin Wang, Deyun Yang, Qiang Zhang","doi":"10.1080/13873954.2020.1771379","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to study whether haemoglobin (Hb) can replace peroxidase and has good catalytic properties. The key to exploring the characteristics of Hb peroxidase is to establish a suitable kinetic model, which is studied in this paper. First, according to the Hb catalytic reaction, a nonlinear system is established and improved. It is proved that the established system is in line with the practical significance. The stability of the original system is judged by analysing the stability of the simplified system. Then, considering the effect of time delay on Hb catalytic reaction, a nonlinear time-delay catalytic reaction system is obtained. For convenient application, the system is linearized using Taylor’s formula, and the dynamic characteristics of Hopf bifurcation are analysed. The response diagrams of three system are plotted by setting perturbation parameters, and their variations are observed to analyse the differences among them. The results show that the nonlinear time-delay system can better describe the characteristics of the catalytic reaction.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"26 1","pages":"306 - 321"},"PeriodicalIF":1.8000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1771379","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1771379","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT In order to study whether haemoglobin (Hb) can replace peroxidase and has good catalytic properties. The key to exploring the characteristics of Hb peroxidase is to establish a suitable kinetic model, which is studied in this paper. First, according to the Hb catalytic reaction, a nonlinear system is established and improved. It is proved that the established system is in line with the practical significance. The stability of the original system is judged by analysing the stability of the simplified system. Then, considering the effect of time delay on Hb catalytic reaction, a nonlinear time-delay catalytic reaction system is obtained. For convenient application, the system is linearized using Taylor’s formula, and the dynamic characteristics of Hopf bifurcation are analysed. The response diagrams of three system are plotted by setting perturbation parameters, and their variations are observed to analyse the differences among them. The results show that the nonlinear time-delay system can better describe the characteristics of the catalytic reaction.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.