Universal Qudit Gate Synthesis for Transmons

IF 11 Q1 PHYSICS, APPLIED
Laurin E. Fischer, A. Chiesa, F. Tacchino, D. Egger, S. Carretta, I. Tavernelli
{"title":"Universal Qudit Gate Synthesis for Transmons","authors":"Laurin E. Fischer, A. Chiesa, F. Tacchino, D. Egger, S. Carretta, I. Tavernelli","doi":"10.1103/PRXQuantum.4.030327","DOIUrl":null,"url":null,"abstract":"Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using $d$-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond $99\\%$ in the $d=4$ case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of ${\\rm SU}(16)$ gates for noisy quantum hardware and an embedded error correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control -- a valuable extension to the operational toolbox of superconducting quantum information processing -- is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQuantum.4.030327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using $d$-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond $99\%$ in the $d=4$ case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of ${\rm SU}(16)$ gates for noisy quantum hardware and an embedded error correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control -- a valuable extension to the operational toolbox of superconducting quantum information processing -- is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.

Abstract Image

Transmons的通用Qudit门合成
基于门的量子计算机通常以称为量子比特的二维单位编码和处理信息。使用d维量子可能会带来内在的优势,包括更有效的电路合成、针对问题的编码和嵌入式纠错。在这项工作中,我们设计了一个基于超导量子比特的量子处理器,其中transmon量子比特的逻辑空间扩展到更高的激发水平。我们提出了一种具有双量子元交叉共振纠缠门的通用门集,我们预测在具有实际实验参数的量子元d=4的情况下,保真度超过$ 99% $。此外,我们提出了一个分解程序,将一般量子位一元元编译成这些基本门,比量子位替代方案需要更少的纠缠门。作为概念验证应用,我们在数值上演示了用于噪声量子硬件的${\rm SU}(16)$门的合成和嵌入式纠错序列,该序列在transmon夸脱中编码量子位存储器以防止纯减相噪声。我们得出的结论是,通用量子控制——超导量子信息处理操作工具箱的一个有价值的扩展——是目前基于transmon的架构所能达到的,并且在近期和长期硬件中都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信