A functional central limit theorem for SI processes on configuration model graphs

Pub Date : 2022-09-01 DOI:10.1017/apr.2022.52
Wasiur R. KhudaBukhsh, Casper Woroszyło, G. Rempała, H. Koeppl
{"title":"A functional central limit theorem for SI processes on configuration model graphs","authors":"Wasiur R. KhudaBukhsh, Casper Woroszyło, G. Rempała, H. Koeppl","doi":"10.1017/apr.2022.52","DOIUrl":null,"url":null,"abstract":"Abstract We study a stochastic compartmental susceptible–infected (SI) epidemic process on a configuration model random graph with a given degree distribution over a finite time interval. We split the population of graph vertices into two compartments, namely, S and I, denoting susceptible and infected vertices, respectively. In addition to the sizes of these two compartments, we keep track of the counts of SI-edges (those connecting a susceptible and an infected vertex) and SS-edges (those connecting two susceptible vertices). We describe the dynamical process in terms of these counts and present a functional central limit theorem (FCLT) for them as the number of vertices in the random graph grows to infinity. The FCLT asserts that the counts, when appropriately scaled, converge weakly to a continuous Gaussian vector semimartingale process in the space of vector-valued càdlàg functions endowed with the Skorokhod topology. We discuss applications of the FCLT in percolation theory and in modelling the spread of computer viruses. We also provide simulation results illustrating the FCLT for some common degree distributions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We study a stochastic compartmental susceptible–infected (SI) epidemic process on a configuration model random graph with a given degree distribution over a finite time interval. We split the population of graph vertices into two compartments, namely, S and I, denoting susceptible and infected vertices, respectively. In addition to the sizes of these two compartments, we keep track of the counts of SI-edges (those connecting a susceptible and an infected vertex) and SS-edges (those connecting two susceptible vertices). We describe the dynamical process in terms of these counts and present a functional central limit theorem (FCLT) for them as the number of vertices in the random graph grows to infinity. The FCLT asserts that the counts, when appropriately scaled, converge weakly to a continuous Gaussian vector semimartingale process in the space of vector-valued càdlàg functions endowed with the Skorokhod topology. We discuss applications of the FCLT in percolation theory and in modelling the spread of computer viruses. We also provide simulation results illustrating the FCLT for some common degree distributions.
分享
查看原文
配置模型图上SI过程的一个函数中心极限定理
摘要我们研究了有限时间间隔内具有给定度分布的配置模型随机图上的随机区室易感-感染(SI)流行病过程。我们将图顶点的总体划分为两个部分,即S和I,分别表示易感顶点和受感染顶点。除了这两个隔间的大小外,我们还跟踪SI边(连接易感顶点和受感染顶点的边)和SS边(连接两个易感顶点的边的边)的计数。我们用这些计数来描述动力学过程,并给出了当随机图中的顶点数量增长到无穷大时,它们的函数中心极限定理(FCLT)。FCLT断言,在具有Skorokhod拓扑的向量值càdlàg函数空间中,当适当缩放时,计数弱收敛于连续高斯向量半鞅过程。我们讨论了FCLT在渗流理论和计算机病毒传播建模中的应用。我们还提供了一些常见度分布的FCLT的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信