{"title":"A class of improved conjugate gradient methods for nonconvex unconstrained optimization","authors":"Qingjie Hu, Hongrun Zhang, Zhijuan Zhou, Yu Chen","doi":"10.1002/nla.2482","DOIUrl":null,"url":null,"abstract":"In this paper, based on a new class of conjugate gradient methods which are proposed by Rivaie, Dai and Omer et al. we propose a class of improved conjugate gradient methods for nonconvex unconstrained optimization. Different from the above methods, our methods possess the following properties: (i) the search direction always satisfies the sufficient descent condition independent of any line search; (ii) these approaches are globally convergent with the standard Wolfe line search or standard Armijo line search without any convexity assumption. Moreover, our numerical results also demonstrated the efficiencies of the proposed methods.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2482","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, based on a new class of conjugate gradient methods which are proposed by Rivaie, Dai and Omer et al. we propose a class of improved conjugate gradient methods for nonconvex unconstrained optimization. Different from the above methods, our methods possess the following properties: (i) the search direction always satisfies the sufficient descent condition independent of any line search; (ii) these approaches are globally convergent with the standard Wolfe line search or standard Armijo line search without any convexity assumption. Moreover, our numerical results also demonstrated the efficiencies of the proposed methods.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.