M. Mietzsch, Henrik Hering, E. Hammer, M. Agbandje-McKenna, S. Zolotukhin, R. Heilbronn
{"title":"OneBac 2.0: Sf9 Cell Lines for Production of AAV1, AAV2, and AAV8 Vectors with Minimal Encapsidation of Foreign DNA.","authors":"M. Mietzsch, Henrik Hering, E. Hammer, M. Agbandje-McKenna, S. Zolotukhin, R. Heilbronn","doi":"10.1089/hgtb.2016.164","DOIUrl":null,"url":null,"abstract":"Recombinant adeno-associated viral (rAAV) vectors for human gene therapy require efficient and economical production methods to keep pace with the rapidly increasing clinical demand. In addition, the manufacturing process must ensure high vector quality and biological safety. The OneBac system offers easily scalable rAAV vector production in insect Sf9-derived AAV rep/cap-expressing producer cell lines infected with a single baculovirus that carries the rAAV backbone. For most AAV serotypes high burst sizes per cell were achieved, combined with high infectivity rates. OneBac 2.0 represents a 2-fold advancement: First, enhanced VP1 proportions in AAV5 capsids lead to vastly increased per-particle infectivity rates. Second, collateral packaging of foreign DNA is suppressed by removal of the Rep-binding element (RBE). In this study we show that this advancement of AAV5 packaging can be translated to OneBac 2.0-derived packaging systems for alternative AAV serotypes. By removal of the RBE, collateral packaging of nonvector DNA was drastically reduced in all newly tested serotypes (AAV1, AAV2, and AAV8). However, the splicing-based strategy to enhance VP1 expression in order to increase AAV5 infectivity hardly improved infectivity rates of AAV-1, -2, or -8 compared with the original OneBac cell lines. Our results emphasize that OneBac 2.0 represents an advancement for scalable, high-titer production of various AAV serotypes, leading to AAV particles with minimal packaging of foreign DNA.","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"28 1 1","pages":"15-22"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2016.164","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2016.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 21
Abstract
Recombinant adeno-associated viral (rAAV) vectors for human gene therapy require efficient and economical production methods to keep pace with the rapidly increasing clinical demand. In addition, the manufacturing process must ensure high vector quality and biological safety. The OneBac system offers easily scalable rAAV vector production in insect Sf9-derived AAV rep/cap-expressing producer cell lines infected with a single baculovirus that carries the rAAV backbone. For most AAV serotypes high burst sizes per cell were achieved, combined with high infectivity rates. OneBac 2.0 represents a 2-fold advancement: First, enhanced VP1 proportions in AAV5 capsids lead to vastly increased per-particle infectivity rates. Second, collateral packaging of foreign DNA is suppressed by removal of the Rep-binding element (RBE). In this study we show that this advancement of AAV5 packaging can be translated to OneBac 2.0-derived packaging systems for alternative AAV serotypes. By removal of the RBE, collateral packaging of nonvector DNA was drastically reduced in all newly tested serotypes (AAV1, AAV2, and AAV8). However, the splicing-based strategy to enhance VP1 expression in order to increase AAV5 infectivity hardly improved infectivity rates of AAV-1, -2, or -8 compared with the original OneBac cell lines. Our results emphasize that OneBac 2.0 represents an advancement for scalable, high-titer production of various AAV serotypes, leading to AAV particles with minimal packaging of foreign DNA.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.