Dimension of images of large level sets

Pub Date : 2020-10-22 DOI:10.7146/math.scand.a-129246
A. O’Farrell, G. Armstrong
{"title":"Dimension of images of large level sets","authors":"A. O’Farrell, G. Armstrong","doi":"10.7146/math.scand.a-129246","DOIUrl":null,"url":null,"abstract":"Let $k$ be a natural number. We consider $k$-times continuously differentiable real-valued functions $f\\colon E\\to \\mathbb{R} $, where $E$ is some interval on the line having positive length. For $0<\\alpha <1$ let $I_\\alpha (f)$ denote the set of values $y\\in \\mathbb{R} $ whose preimage $f^{-1}(y)$ has Hausdorff dimension at least $\\alpha$. We consider how large can be the Hausdorff dimension of $I_\\alpha (f)$, as $f$ ranges over the set of all $k$-times continuously differentiable functions from $E$ into $\\mathbb{R} $. We show that the sharp upper bound on $\\dim I_\\alpha (f)$ is $(1-\\alpha )/k$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-129246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $k$ be a natural number. We consider $k$-times continuously differentiable real-valued functions $f\colon E\to \mathbb{R} $, where $E$ is some interval on the line having positive length. For $0<\alpha <1$ let $I_\alpha (f)$ denote the set of values $y\in \mathbb{R} $ whose preimage $f^{-1}(y)$ has Hausdorff dimension at least $\alpha$. We consider how large can be the Hausdorff dimension of $I_\alpha (f)$, as $f$ ranges over the set of all $k$-times continuously differentiable functions from $E$ into $\mathbb{R} $. We show that the sharp upper bound on $\dim I_\alpha (f)$ is $(1-\alpha )/k$.
分享
查看原文
大型水平集图像的尺寸
设$k$是一个自然数。我们考虑$k$-次连续可微实值函数$f\colonE\to\mathbb{R}$,其中$E$是具有正长度的线上的某个区间。对于$0<\alpha<1$,设$I_\alpha(f)$表示值$y\in\mathbb{R}$的集合,其前映像$f^{-1}(y)$具有至少$\alpha$的Hausdorff维数。我们考虑$I_\alpha(f)$的Hausdorff维数有多大,因为$f$在从$E$到$\mathbb{R}$的所有$k$次连续可微函数的集合上。我们证明了$\dim I_\alpha(f)$的尖锐上界是$(1-\alpha)/k$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信