Abdelkader Hidki, Abderrahim Lakhfif, J. El Qars, M. Nassik
{"title":"Transfer of squeezing in a cavity magnomechanics system","authors":"Abdelkader Hidki, Abderrahim Lakhfif, J. El Qars, M. Nassik","doi":"10.1080/09500340.2023.2219778","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a cavity magnomechanical system composed of a microwave (MW) cavity, magnon, and phonon modes, where the magnon is coupled, respectively, to the MW cavity and phonon through both the magnetic-dipole and magnomechanical interactions. We demonstrate that the flux-driven Josephson parametric amplifier with a nonlinear gain is crucial in creating the squeezed states of the magnon and phonon modes. We show that, by the cavity-magnon state-swap interaction, the magnons can be completed in a squeezed state, and that the phonons can also be squeezed by driving the magnons through a strong red-detuned MW field. Essentially, our system reveals a squeezing transfer from cavity photons to magnons and then to phonons. The influence of physical and environmental parameters on the degree of squeezing is widely explored.","PeriodicalId":16426,"journal":{"name":"Journal of Modern Optics","volume":"70 1","pages":"189 - 196"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/09500340.2023.2219778","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we consider a cavity magnomechanical system composed of a microwave (MW) cavity, magnon, and phonon modes, where the magnon is coupled, respectively, to the MW cavity and phonon through both the magnetic-dipole and magnomechanical interactions. We demonstrate that the flux-driven Josephson parametric amplifier with a nonlinear gain is crucial in creating the squeezed states of the magnon and phonon modes. We show that, by the cavity-magnon state-swap interaction, the magnons can be completed in a squeezed state, and that the phonons can also be squeezed by driving the magnons through a strong red-detuned MW field. Essentially, our system reveals a squeezing transfer from cavity photons to magnons and then to phonons. The influence of physical and environmental parameters on the degree of squeezing is widely explored.
期刊介绍:
The journal (under its former title Optica Acta) was founded in 1953 - some years before the advent of the laser - as an international journal of optics. Since then optical research has changed greatly; fresh areas of inquiry have been explored, different techniques have been employed and the range of application has greatly increased. The journal has continued to reflect these advances as part of its steadily widening scope.
Journal of Modern Optics aims to publish original and timely contributions to optical knowledge from educational institutions, government establishments and industrial R&D groups world-wide. The whole field of classical and quantum optics is covered. Papers may deal with the applications of fundamentals of modern optics, considering both experimental and theoretical aspects of contemporary research. In addition to regular papers, there are topical and tutorial reviews, and special issues on highlighted areas.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.
General topics covered include:
• Optical and photonic materials (inc. metamaterials)
• Plasmonics and nanophotonics
• Quantum optics (inc. quantum information)
• Optical instrumentation and technology (inc. detectors, metrology, sensors, lasers)
• Coherence, propagation, polarization and manipulation (classical optics)
• Scattering and holography (diffractive optics)
• Optical fibres and optical communications (inc. integrated optics, amplifiers)
• Vision science and applications
• Medical and biomedical optics
• Nonlinear and ultrafast optics (inc. harmonic generation, multiphoton spectroscopy)
• Imaging and Image processing