{"title":"Special issue: International Conference on Data Analytics and Computational Techniques","authors":"H. Nashine, R. Jain, N. Choubey, Mayank Sharma","doi":"10.3233/mas-220001","DOIUrl":null,"url":null,"abstract":"Being a combination of several techniques and processing methods, the Data Analytics technology is emerged as an effective tool for the enterprises to obtain relevant results for strategic management and implementation. In the present circumstances the digital world is extensively using the advanced data analytic techniques for extracting knowledge or useful insights from the various kind of data such as Internet of Things (IoT) data, health data, business data, security data, and many more, which can be used for smart decision-making in various application domains. In the areas of data science, advanced analytical methods including machine learning modelling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. Inspired by the mentioned facts, an international conference on “Data Analytics and Computational Techniques” had been organized and hosted in VIT Bhopal University in fully virtual mode during December 2021. The seven full length papers for this special issue were selected among all the accepted papers in the conference by the MASA Guest Editors Hemant Kumar Nashine, Reena Jain, Neha Choubey and Mayank Sharma, based on the relevance to the journal and the reviews papers. The papers went through the normal journal-style review process and they appear in the present form after implementing the valuable suggestions by the Co-Editor-in-Chief Stan Lipovetsky. The papers are pertaining to the various data analytics techniques applied to the diverse statistic areas. We appreciate the willingness of the authors to help in organizing this special issue. S.S. Aravinth, S. Srithar, M. Senthilkumar and J. Senthilkumar contribute a paper titled ”Regression Analysis Based Decision Support System With Relationship Extraction”. The Authors used the regression modelling to analyse and study the relationship between the Years of Experience and the salary of employees in phased approach. M. Ashraf Bhat and G. Sankara Raju Kosuru present a paper titled “On Continuity of Machine Learning framework of models based on various approaches of artificial to recognize payment behaviour of interrelation between anti-fraud system and operational","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-220001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Being a combination of several techniques and processing methods, the Data Analytics technology is emerged as an effective tool for the enterprises to obtain relevant results for strategic management and implementation. In the present circumstances the digital world is extensively using the advanced data analytic techniques for extracting knowledge or useful insights from the various kind of data such as Internet of Things (IoT) data, health data, business data, security data, and many more, which can be used for smart decision-making in various application domains. In the areas of data science, advanced analytical methods including machine learning modelling can provide actionable insights or deeper knowledge about data, which makes the computing process automatic and smart. Inspired by the mentioned facts, an international conference on “Data Analytics and Computational Techniques” had been organized and hosted in VIT Bhopal University in fully virtual mode during December 2021. The seven full length papers for this special issue were selected among all the accepted papers in the conference by the MASA Guest Editors Hemant Kumar Nashine, Reena Jain, Neha Choubey and Mayank Sharma, based on the relevance to the journal and the reviews papers. The papers went through the normal journal-style review process and they appear in the present form after implementing the valuable suggestions by the Co-Editor-in-Chief Stan Lipovetsky. The papers are pertaining to the various data analytics techniques applied to the diverse statistic areas. We appreciate the willingness of the authors to help in organizing this special issue. S.S. Aravinth, S. Srithar, M. Senthilkumar and J. Senthilkumar contribute a paper titled ”Regression Analysis Based Decision Support System With Relationship Extraction”. The Authors used the regression modelling to analyse and study the relationship between the Years of Experience and the salary of employees in phased approach. M. Ashraf Bhat and G. Sankara Raju Kosuru present a paper titled “On Continuity of Machine Learning framework of models based on various approaches of artificial to recognize payment behaviour of interrelation between anti-fraud system and operational
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.