{"title":"Miura Type Transform Between Non-Abelian Volterra and Toda Lattices and Inverse Spectral Problem for Band Operators","authors":"A. Osipov","doi":"10.1134/S1061920823030093","DOIUrl":null,"url":null,"abstract":"<p> We study a discrete Miura-type transformation between the hierarcies of non-Abelian semi-infinite Volterra (Kac–van Moerbeke) and Toda lattices with operator coefficients in terms of the inverse spectral problem for three-diagonal band operators, which appear in the Lax representation for such systems. This inverse problem method, which amounts to reconstruction of the operator from the moments of its Weyl operator-valued function, can be used in solving initial-boundary value problem for the systems of both these hierarchies. It is shown that the Miura transformation can be easily described in terms of these moments. Using this description we establish a bijection between the Volterra hierarchy and the Toda sub-hierarchy which can be characterized via Lax operators corresponding to its lattices. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 3","pages":"382 - 396"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823030093","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study a discrete Miura-type transformation between the hierarcies of non-Abelian semi-infinite Volterra (Kac–van Moerbeke) and Toda lattices with operator coefficients in terms of the inverse spectral problem for three-diagonal band operators, which appear in the Lax representation for such systems. This inverse problem method, which amounts to reconstruction of the operator from the moments of its Weyl operator-valued function, can be used in solving initial-boundary value problem for the systems of both these hierarchies. It is shown that the Miura transformation can be easily described in terms of these moments. Using this description we establish a bijection between the Volterra hierarchy and the Toda sub-hierarchy which can be characterized via Lax operators corresponding to its lattices.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.