The Weak Solvability of an Inhomogeneous Dynamic Problem for a Viscoelastic Continuum with Memory

Pub Date : 2023-09-05 DOI:10.1134/S0016266323010082
V. G. Zvyagin, V. P. Orlov
{"title":"The Weak Solvability of an Inhomogeneous Dynamic Problem for a Viscoelastic Continuum with Memory","authors":"V. G. Zvyagin,&nbsp;V. P. Orlov","doi":"10.1134/S0016266323010082","DOIUrl":null,"url":null,"abstract":"<p> The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323010082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used.

分享
查看原文
具有记忆的粘弹性连续体非齐次动力问题的弱可解性
证明了具有记忆的粘弹性流体沿非光滑速度场非齐次边界条件运动方程初边值问题弱解的存在性。分析涉及到原始问题的伽辽金型近似,然后通过基于先验估计的极限。为了研究非光滑速度场的轨迹行为,应用了正则拉格朗日流动理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信