Whitney–Sullivan Constructions for Transitive Lie Algebroids–Smooth Case

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
A. S. Mishchenko, J. R. Oliveira
{"title":"Whitney–Sullivan Constructions for Transitive Lie Algebroids–Smooth Case","authors":"A. S. Mishchenko,&nbsp;J. R. Oliveira","doi":"10.1134/S106192082303007X","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(M\\)</span> be a smooth manifold, smoothly triangulated by a simplicial complex <span>\\(K\\)</span>, and <span>\\( {\\cal A} \\)</span> a transitive Lie algebroid on <span>\\(M\\)</span>. A piecewise smooth form on <span>\\( {\\cal A} \\)</span> is a family <span>\\(\\omega=(\\omega_{\\Delta})_{\\Delta\\in K}\\)</span> such that <span>\\(\\omega_{\\Delta}\\)</span> is a smooth form on the Lie algebroid restriction of <span>\\( {\\cal A} \\)</span> to <span>\\(\\Delta\\)</span>, satisfying the compatibility condition concerning the restrictions of <span>\\(\\omega_{\\Delta}\\)</span> to the faces of <span>\\(\\Delta\\)</span>, that is, if <span>\\(\\Delta'\\)</span> is a face of <span>\\(\\Delta\\)</span>, the restriction of the form <span>\\(\\omega_{\\Delta}\\)</span> to the simplex <span>\\(\\Delta'\\)</span> coincides with the form <span>\\(\\omega_{\\Delta'}\\)</span>. The set <span>\\(\\Omega^{\\ast}( {\\cal A} ;K)\\)</span> of all piecewise smooth forms on <span>\\( {\\cal A} \\)</span> is a cochain algebra. There exists a natural morphism </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 3","pages":"360 - 374"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082303007X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(M\) be a smooth manifold, smoothly triangulated by a simplicial complex \(K\), and \( {\cal A} \) a transitive Lie algebroid on \(M\). A piecewise smooth form on \( {\cal A} \) is a family \(\omega=(\omega_{\Delta})_{\Delta\in K}\) such that \(\omega_{\Delta}\) is a smooth form on the Lie algebroid restriction of \( {\cal A} \) to \(\Delta\), satisfying the compatibility condition concerning the restrictions of \(\omega_{\Delta}\) to the faces of \(\Delta\), that is, if \(\Delta'\) is a face of \(\Delta\), the restriction of the form \(\omega_{\Delta}\) to the simplex \(\Delta'\) coincides with the form \(\omega_{\Delta'}\). The set \(\Omega^{\ast}( {\cal A} ;K)\) of all piecewise smooth forms on \( {\cal A} \) is a cochain algebra. There exists a natural morphism

传递李代数群的Whitney-Sullivan构造-光滑情况
设\(M\)是一个光滑流形,由一个简单复数\(K\)平滑三角化,\( {\cal A} \)是\(M\)上的一个传递李代数。\( {\cal A} \)上的分段光滑形式是一个家族\(\omega=(\omega_{\Delta})_{\Delta\in K}\),使得\(\omega_{\Delta}\)是\( {\cal A} \)到\(\Delta\)的李代数约束上的光滑形式,满足\(\omega_{\Delta}\)到\(\Delta\)的面约束的兼容性条件,即如果\(\Delta'\)是\(\Delta\)的面,形式\(\omega_{\Delta}\)对单纯形\(\Delta'\)的限制与形式\(\omega_{\Delta'}\)一致。\( {\cal A} \)上所有分段光滑形式的集合\(\Omega^{\ast}( {\cal A} ;K)\)是一个协链代数。存在一种自然的态射
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信