A Deep Study on Machine Learning Techniques for Tool Condition Monitoring in Turning of Titanium-based Superalloys.

Q4 Energy
Sanjeet Jakati, V. Koti, Pramodkumar S. Kataraki, M. Mazlan, M. F. Hamid
{"title":"A Deep Study on Machine Learning Techniques for Tool Condition Monitoring in Turning of Titanium-based Superalloys.","authors":"Sanjeet Jakati, V. Koti, Pramodkumar S. Kataraki, M. Mazlan, M. F. Hamid","doi":"10.18311/jmmf/2022/31235","DOIUrl":null,"url":null,"abstract":"The current state-of-the-art review on tool condition monitoring for turning of titanium-based superalloys is presented in this paper. Titanium (Ti) superalloys are widely utilised in aerospace industry, automobile industry, petrochemical applications. Ti superalloys are also used in fabrication of biomedical components due to their outstanding combination of mechanical properties and strong corrosion resistance at extreme temperatures. But these superalloys are difficult-to-cut because to their low heat conductivity, low elastic modulus, high strength, and strong chemical resistance. Literature review highlights the drastic reduction in tool life of titanium superalloys at highspeed and feed rates throughout the machining process. The review paper focuses on (i) various reasons to deploy tool condition monitoring; and (ii) study of tool condition monitoring methods based on machine learning techniques to identify the ideal parameters for the prevention of catastrophic tool failure.","PeriodicalId":39575,"journal":{"name":"Journal of Mines, Metals and Fuels","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mines, Metals and Fuels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jmmf/2022/31235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The current state-of-the-art review on tool condition monitoring for turning of titanium-based superalloys is presented in this paper. Titanium (Ti) superalloys are widely utilised in aerospace industry, automobile industry, petrochemical applications. Ti superalloys are also used in fabrication of biomedical components due to their outstanding combination of mechanical properties and strong corrosion resistance at extreme temperatures. But these superalloys are difficult-to-cut because to their low heat conductivity, low elastic modulus, high strength, and strong chemical resistance. Literature review highlights the drastic reduction in tool life of titanium superalloys at highspeed and feed rates throughout the machining process. The review paper focuses on (i) various reasons to deploy tool condition monitoring; and (ii) study of tool condition monitoring methods based on machine learning techniques to identify the ideal parameters for the prevention of catastrophic tool failure.
基于机器学习技术的钛基高温合金车削刀具状态监测研究。
本文综述了钛基高温合金车削刀具状态监测的研究进展。钛(Ti)高温合金广泛应用于航空航天工业、汽车工业、石油化工等领域。钛高温合金还用于制造生物医学部件,因为它们在极端温度下具有出色的机械性能和强大的耐腐蚀性。但高温合金导热系数低,弹性模量低,强度高,耐化学性强,不易切割。文献综述强调在整个加工过程中,钛合金在高速和进给速率下刀具寿命急剧减少。本文主要讨论了(1)部署工具状态监测的各种原因;(ii)研究基于机器学习技术的刀具状态监测方法,以确定防止刀具灾难性故障的理想参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mines, Metals and Fuels
Journal of Mines, Metals and Fuels Energy-Fuel Technology
CiteScore
0.20
自引率
0.00%
发文量
101
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信