Organic Field Effect Transistors

Q4 Engineering
Henry Boudinov, G. V. Leite
{"title":"Organic Field Effect Transistors","authors":"Henry Boudinov, G. V. Leite","doi":"10.29292/jics.v17i2.615","DOIUrl":null,"url":null,"abstract":"This article begins with a brief overview of the structure, physical characteristics, and peculiarities of organic field effect transistors. The main differences from the silicon MOSFET are emphasized. The results of poly 3-hexylthiophene and cross-linked polyvinyl alcohol top gate-bottom contact transistors with different channel lengths fabricated by standard photolithography and plasma etching are described. Transistors showed good charge mobility, high ION/IOFF and excellent environmental stability. The Shockley model and the Transmission Line Method (TLM) were applied to characterize the transistors. Mobility was extracted by both methods and differences were discussed. The shorter the channel length and the higher the conductivity of the semiconductor, the greater the impact of contact resistance. In these cases, the use of TLM for parameters extraction becomes essential. The transistors were submitted to extended current-voltage measurements and drain current degradation was observed. Drain current as a function of the integral charge passing through the channel was investigated. The strong decrease in current was found to be related to reduced mobility of charge carriers. Reasons for this behavior are suggested.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i2.615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This article begins with a brief overview of the structure, physical characteristics, and peculiarities of organic field effect transistors. The main differences from the silicon MOSFET are emphasized. The results of poly 3-hexylthiophene and cross-linked polyvinyl alcohol top gate-bottom contact transistors with different channel lengths fabricated by standard photolithography and plasma etching are described. Transistors showed good charge mobility, high ION/IOFF and excellent environmental stability. The Shockley model and the Transmission Line Method (TLM) were applied to characterize the transistors. Mobility was extracted by both methods and differences were discussed. The shorter the channel length and the higher the conductivity of the semiconductor, the greater the impact of contact resistance. In these cases, the use of TLM for parameters extraction becomes essential. The transistors were submitted to extended current-voltage measurements and drain current degradation was observed. Drain current as a function of the integral charge passing through the channel was investigated. The strong decrease in current was found to be related to reduced mobility of charge carriers. Reasons for this behavior are suggested.
有机场效应晶体管
本文首先简要概述了有机场效应晶体管的结构、物理特性和特性。强调了与硅MOSFET的主要区别。用标准光刻法和等离子体刻蚀法制备了不同沟道长度的聚3-己基噻吩和交联聚乙烯醇顶-底接触晶体管。晶体管具有良好的电荷迁移率、高离子/IOFF和优异的环境稳定性。采用肖克利模型和传输线法(TLM)对晶体管进行了表征。两种方法都提取了迁移率,并讨论了差异。沟道长度越短,半导体的电导率越高,接触电阻的影响越大。在这些情况下,使用TLM进行参数提取变得至关重要。将晶体管提交到扩展的电流-电压测量中,观察到漏极电流衰减。研究了漏极电流与通过通道的积分电荷的关系。发现电流的强烈下降与载流子迁移率的降低有关。提出了这种行为的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信