The stability of a stochastic discrete SIVS epidemic model with general nonlinear incidence

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Buyu Wen, Z. Teng, Bing Liu
{"title":"The stability of a stochastic discrete SIVS epidemic model with general nonlinear incidence","authors":"Buyu Wen, Z. Teng, Bing Liu","doi":"10.15388/namc.2023.28.29928","DOIUrl":null,"url":null,"abstract":"In this paper, based on Euler–Marryama method and theory of stochastic processes, a stochastic discrete SIVS epidemic model with general nonlinear incidence and vaccination is proposed by adding random perturbation and then discretizing the corresponding stochastic differential equation model. Firstly, the basic properties of continuous and discrete deterministic SIVS epidemic models are obtained. Then a criterion on the asymptotic mean-square stability of zero solution for a general linear stochastic difference system is established. As the applications of this criterion, the sufficient conditions on the stability in probability of the disease-free and endemic equilibria for the stochastic discrete SIVS epidemic model are obtained. The numerical simulations are given to illustrate the theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.29928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, based on Euler–Marryama method and theory of stochastic processes, a stochastic discrete SIVS epidemic model with general nonlinear incidence and vaccination is proposed by adding random perturbation and then discretizing the corresponding stochastic differential equation model. Firstly, the basic properties of continuous and discrete deterministic SIVS epidemic models are obtained. Then a criterion on the asymptotic mean-square stability of zero solution for a general linear stochastic difference system is established. As the applications of this criterion, the sufficient conditions on the stability in probability of the disease-free and endemic equilibria for the stochastic discrete SIVS epidemic model are obtained. The numerical simulations are given to illustrate the theoretical results.
一类具有一般非线性发生率的随机离散SIVS流行病模型的稳定性
本文基于Euler–Marriama方法和随机过程理论,通过添加随机扰动,然后离散相应的随机微分方程模型,提出了一个具有一般非线性发病率和疫苗接种的随机离散SIVS流行病模型。首先,得到了连续和离散确定性SIVS流行病模型的基本性质。然后,建立了一般线性随机差分系统零解的渐近均方稳定性判据。作为该准则的应用,得到了随机离散SIVS流行病模型无病和地方病均衡概率稳定的充分条件。通过数值模拟对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信