{"title":"Adjustment of Measurements With Multiplicative Random Errors and Trends","authors":"Yun Shi, Peiliang Xu","doi":"10.1109/lgrs.2020.3010827","DOIUrl":null,"url":null,"abstract":"Measurements in remote sensing geodesy have been well known to be of speckle noise nature. Although a number of despeckling algorithms have been proposed mainly based on the local weighted statistics in the engineering literature, there are relatively few studies on the statistical adjustment methods for processing the measurements contaminated with the speckle or multiplicative errors. We develop the least squares (LS)-based adjustment methods for the remote sensing measurements with multiplicative errors and trends, evaluate the accuracy of the parameter estimates, and derive the corresponding formulas to estimate the variance of the unit weight. Simulation examples are used to illustrate the developed theory and methods.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1916-1920"},"PeriodicalIF":4.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3010827","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2020.3010827","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8
Abstract
Measurements in remote sensing geodesy have been well known to be of speckle noise nature. Although a number of despeckling algorithms have been proposed mainly based on the local weighted statistics in the engineering literature, there are relatively few studies on the statistical adjustment methods for processing the measurements contaminated with the speckle or multiplicative errors. We develop the least squares (LS)-based adjustment methods for the remote sensing measurements with multiplicative errors and trends, evaluate the accuracy of the parameter estimates, and derive the corresponding formulas to estimate the variance of the unit weight. Simulation examples are used to illustrate the developed theory and methods.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.