{"title":"Fiber orientation in continuous fiber-reinforced thermoplastics/metal hybrid joining via multi-pin arrays","authors":"J. Popp, M. Busch, T. Hausotte, D. Drummer","doi":"10.1515/secm-2022-0165","DOIUrl":null,"url":null,"abstract":"Abstract Continuous fiber-reinforced thermoplastics (CFRTs) can in combination with high-strength metals offer characteristics that cannot be achieved with mono-material parts. One possible example is the combination of locally high-temperature resistance in the metal component with superior weight-related mechanical properties due to the CFRT component. This approach requires a reliable and durable joining technology, which considers the material-specific properties and allows to exploit the full potential of CFRT/metal hybrid parts. A promising approach in the field of CFRT/metal joining is the use of metallic pins, which can be embedded in the locally heated CFRT component to create a form-fitting joint. In the current state of the art, primarily single-pins are investigated and characterized: especially the distinct fiber orientation in the direct pin pressing process is only described for single-pin joints. Behind this background, the present study aims at creating an understanding of the fiber orientation mechanism for multi-pin arrays. Therefore, in the scope of this study, unidirectional reinforced glass fiber/polypropylene samples are joined via direct pin pressing and infrared heating with different 1D and 2D multi-pins arrays with different pin-diameters, spacing and pin distributions. The resulting joint morphology is consequently analyzed using micro-computer-tomography. Based on the performed investigations, a model for the fiber displacement mechanism is proposed, and the first recommendations for the design of fiber-friendly multi-pin joints with unidirectional reinforcements are given. It showed that especially pin-spacing in fiber orientation in dependency of the pin diameter is critical for a fully reconsolidated joint quality, and it is suggested that a pin-offset in the fiber direction is beneficial for a fiber-friendly joining process.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0165","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Continuous fiber-reinforced thermoplastics (CFRTs) can in combination with high-strength metals offer characteristics that cannot be achieved with mono-material parts. One possible example is the combination of locally high-temperature resistance in the metal component with superior weight-related mechanical properties due to the CFRT component. This approach requires a reliable and durable joining technology, which considers the material-specific properties and allows to exploit the full potential of CFRT/metal hybrid parts. A promising approach in the field of CFRT/metal joining is the use of metallic pins, which can be embedded in the locally heated CFRT component to create a form-fitting joint. In the current state of the art, primarily single-pins are investigated and characterized: especially the distinct fiber orientation in the direct pin pressing process is only described for single-pin joints. Behind this background, the present study aims at creating an understanding of the fiber orientation mechanism for multi-pin arrays. Therefore, in the scope of this study, unidirectional reinforced glass fiber/polypropylene samples are joined via direct pin pressing and infrared heating with different 1D and 2D multi-pins arrays with different pin-diameters, spacing and pin distributions. The resulting joint morphology is consequently analyzed using micro-computer-tomography. Based on the performed investigations, a model for the fiber displacement mechanism is proposed, and the first recommendations for the design of fiber-friendly multi-pin joints with unidirectional reinforcements are given. It showed that especially pin-spacing in fiber orientation in dependency of the pin diameter is critical for a fully reconsolidated joint quality, and it is suggested that a pin-offset in the fiber direction is beneficial for a fiber-friendly joining process.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.