M. Mansourian, Sayed Mehdi Peimanimotlagh, M. Ghaedi, M. Talebianpoor, Z. Salehpour, Ghasem Ghalamfarsa, M. T. Ardakani, H. Bardania
{"title":"Cytotoxic Effect of Podophyllotoxin-Loaded Magnetic Nanoparticles on Proliferation of Colorectal (HT-29) and Breast (MCF-7) Cancer Cell Lines","authors":"M. Mansourian, Sayed Mehdi Peimanimotlagh, M. Ghaedi, M. Talebianpoor, Z. Salehpour, Ghasem Ghalamfarsa, M. T. Ardakani, H. Bardania","doi":"10.2174/2405461507666220204100719","DOIUrl":null,"url":null,"abstract":"\n\nBackground: Treatment used for cancer are generally associated with serious side effects. New solutions for cancer therapy can overcome the shortcomings and problems of conventional therapies by designing drug delivery nanosystems.\n\n\n\nMethods: In this study, magnetic Fe3O4@AU@Albumin core-shell-shell (CSS) nanoparticles were synthesized and characterized by various analyses such as transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetization (VSM). Podophyllotoxin (PPT) was then loaded on magnetic nanoparticles as an anti-cancer drug and its effect on HT-29 and MCF-7 cell lines was evaluated using MTT assay.\n\n\n\nResult: The crystallinity of synthesized Fe3O4 magnetic nanoparticles was confirmed by XRD analysis. Next, a layer of gold was coated the Fe3O4 MNPs. The UV-Vis analysis of core-shell nanoparticles (iron oxide/gold)confirm the successful synthesis of these nanoparticles. The surface of the core-shell nanoparticles was then coated with albumin to load the drug. TEM image confirmed the existence of albumin nanoparticles loaded with core-shell magnetic nanoparticles. \nVSM analysis revealed that iron oxide, Fe3O4@AU, and Fe3O4@AU@Albumin nanoparticles have the highest magnetic properties, respectively. After synthesis of PPT loaded into MNP, the loading efficiency was 50%. The IC50 values of PPT alone and loaded into nanoparticles on MCF-7 cells after 24 hours were 3085.75 and 1868.09 nM, respectively, which were significantly toxic (P-value≤0.05) but not significant after 48 hours. The cytotoxicity of PPT loaded on nanoparticles was significantly more toxic to HT-29 cells after 24 and 48 h than PPT alone (P-value≤0.05).\n\n\n\nConclusion: The anticancer drug of PPT-loaded MNPs has significant advantages over PPT alone due to its improved properties with appropriate cytotoxic activity. Thus, the PPT-loaded MNPs may be considered as effective anti-cancer agents for further research on drug development.\n","PeriodicalId":10924,"journal":{"name":"Current Nanomaterials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2405461507666220204100719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Treatment used for cancer are generally associated with serious side effects. New solutions for cancer therapy can overcome the shortcomings and problems of conventional therapies by designing drug delivery nanosystems.
Methods: In this study, magnetic Fe3O4@AU@Albumin core-shell-shell (CSS) nanoparticles were synthesized and characterized by various analyses such as transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetization (VSM). Podophyllotoxin (PPT) was then loaded on magnetic nanoparticles as an anti-cancer drug and its effect on HT-29 and MCF-7 cell lines was evaluated using MTT assay.
Result: The crystallinity of synthesized Fe3O4 magnetic nanoparticles was confirmed by XRD analysis. Next, a layer of gold was coated the Fe3O4 MNPs. The UV-Vis analysis of core-shell nanoparticles (iron oxide/gold)confirm the successful synthesis of these nanoparticles. The surface of the core-shell nanoparticles was then coated with albumin to load the drug. TEM image confirmed the existence of albumin nanoparticles loaded with core-shell magnetic nanoparticles.
VSM analysis revealed that iron oxide, Fe3O4@AU, and Fe3O4@AU@Albumin nanoparticles have the highest magnetic properties, respectively. After synthesis of PPT loaded into MNP, the loading efficiency was 50%. The IC50 values of PPT alone and loaded into nanoparticles on MCF-7 cells after 24 hours were 3085.75 and 1868.09 nM, respectively, which were significantly toxic (P-value≤0.05) but not significant after 48 hours. The cytotoxicity of PPT loaded on nanoparticles was significantly more toxic to HT-29 cells after 24 and 48 h than PPT alone (P-value≤0.05).
Conclusion: The anticancer drug of PPT-loaded MNPs has significant advantages over PPT alone due to its improved properties with appropriate cytotoxic activity. Thus, the PPT-loaded MNPs may be considered as effective anti-cancer agents for further research on drug development.