Sujee Lee, Philip A. Bain, Albert J. Musa, C. Baker, Jingshan Li
{"title":"An integrated opioid prescription optimization framework for total joint replacement surgery patients","authors":"Sujee Lee, Philip A. Bain, Albert J. Musa, C. Baker, Jingshan Li","doi":"10.1080/24725579.2021.1873878","DOIUrl":null,"url":null,"abstract":"Abstract Opioid overdose, addiction, and death have become a nationwide crisis in recent years. Opioid leftover due to over-prescription at hospitals to treat chronic or surgical pains is one of the main contributors to the epidemic. To reduce leftovers, opioid prescriptions should be adjusted and tailored to patients’ needs. However, insufficient prescription may result in frequent refills for patients with high opioid-use levels, which can lead to inefficiency to patients, physicians, and pharmacists. Therefore, developing an optimal opioid prescription model to provide the necessary and patient-specific amount of opioids with minimal refills has a significant importance. In this paper, we introduce an integrated analytical framework, which intends to optimize both opioid prescription and number of refills based on stratification of patients’ opioid usage levels and corresponding stochastic programming. A case study for total joint replacement surgery patients at a community hospital is then introduced to illustrate the applicability and benefits of the framework.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"11 1","pages":"209 - 223"},"PeriodicalIF":1.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24725579.2021.1873878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2021.1873878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Opioid overdose, addiction, and death have become a nationwide crisis in recent years. Opioid leftover due to over-prescription at hospitals to treat chronic or surgical pains is one of the main contributors to the epidemic. To reduce leftovers, opioid prescriptions should be adjusted and tailored to patients’ needs. However, insufficient prescription may result in frequent refills for patients with high opioid-use levels, which can lead to inefficiency to patients, physicians, and pharmacists. Therefore, developing an optimal opioid prescription model to provide the necessary and patient-specific amount of opioids with minimal refills has a significant importance. In this paper, we introduce an integrated analytical framework, which intends to optimize both opioid prescription and number of refills based on stratification of patients’ opioid usage levels and corresponding stochastic programming. A case study for total joint replacement surgery patients at a community hospital is then introduced to illustrate the applicability and benefits of the framework.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.