{"title":"Neural machine translation for Hungarian","authors":"L. Laki, Zijian Győző Yang","doi":"10.1556/2062.2022.00576","DOIUrl":null,"url":null,"abstract":"In the scope of this research, we aim to give an overview of the currently existing solutions for machine translation and we assess their performance on the English-Hungarian language pair. Hungarian is considered to be a challenging language for machine translation because it has a highly different grammatical structure and word ordering compared to English. We probed various machine translation systems from both academic and industrial applications. One key highlight of our work is that our models (Marian NMT, BART) performed significantly better than the solutions offered by most of the market-leader multinational companies. Finally, we fine-tuned different pre-finetuned models (mT5, mBART, M2M100) for English-Hungarian translation, which achieved state-of-the-art results in our test corpora.","PeriodicalId":37594,"journal":{"name":"Acta Linguistica Academica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Linguistica Academica","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1556/2062.2022.00576","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 1
Abstract
In the scope of this research, we aim to give an overview of the currently existing solutions for machine translation and we assess their performance on the English-Hungarian language pair. Hungarian is considered to be a challenging language for machine translation because it has a highly different grammatical structure and word ordering compared to English. We probed various machine translation systems from both academic and industrial applications. One key highlight of our work is that our models (Marian NMT, BART) performed significantly better than the solutions offered by most of the market-leader multinational companies. Finally, we fine-tuned different pre-finetuned models (mT5, mBART, M2M100) for English-Hungarian translation, which achieved state-of-the-art results in our test corpora.
期刊介绍:
Acta Linguistica Academica publishes papers on general linguistics. Papers presenting empirical material must have strong theoretical implications. The scope of the journal is not restricted to the core areas of linguistics; it also covers areas such as socio- and psycholinguistics, neurolinguistics, discourse analysis, the philosophy of language, language typology, and formal semantics. The journal also publishes book and dissertation reviews and advertisements.