Xiaodong Chen , Zilong Deng , Siya Hu , Jinhai Gao , Xingjun Gao
{"title":"Design of a flexible piezoelectric microgripper based on combined amplification principles","authors":"Xiaodong Chen , Zilong Deng , Siya Hu , Jinhai Gao , Xingjun Gao","doi":"10.1016/j.npe.2019.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming to address the problem of the low amplification ratio of traditional microgrippers, a two-stage microgripper based on the principle of combined amplification was designed with a high amplification ratio and large displacement, using a simple and compact structure. The relationship between theoretical input variables and output variables were first calculated by a projection theorem. Secondly, the performance of the microgripper was analyzed by finite element analysis (FEA). Finally, the accuracy of the theoretical calculation and FEA was verified experimentally. The results show that the microgripper has high magnification and can be gripped in parallel, with self-adaptability for many irregular shaped micro objects. The actual magnification was 23.2×, which is greater than similar products.</p></div>","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":"2 3","pages":"Pages 138-143"},"PeriodicalIF":2.7000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.npe.2019.10.006","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589554019300364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Aiming to address the problem of the low amplification ratio of traditional microgrippers, a two-stage microgripper based on the principle of combined amplification was designed with a high amplification ratio and large displacement, using a simple and compact structure. The relationship between theoretical input variables and output variables were first calculated by a projection theorem. Secondly, the performance of the microgripper was analyzed by finite element analysis (FEA). Finally, the accuracy of the theoretical calculation and FEA was verified experimentally. The results show that the microgripper has high magnification and can be gripped in parallel, with self-adaptability for many irregular shaped micro objects. The actual magnification was 23.2×, which is greater than similar products.