C. Nwankwo, Francis Chigozie Okoyeuzu, I. Ahamefula
{"title":"Electrohydrodynamic, oven and natural drying of mint leaves and effects on the physiochemical indices of the leaves","authors":"C. Nwankwo, Francis Chigozie Okoyeuzu, I. Ahamefula","doi":"10.17221/21/2020-RAE","DOIUrl":null,"url":null,"abstract":"The efficiency of three modified plastic digesters (3.6 m3 each) using food waste for biogas generation in cooking food was evaluated. The experiment was laid out based on a completely randomised design. A plastic tank was modified as a biodegradation system for food waste digestion to generate a biogas. The biochemical and chemical oxygen demand ranged from 44.58 to 49.62% and 130.42 to 139.20%, respectively, before digestion, but decreased significantly (P < 0.05) after digestion. The pH of the fermenting slurry fluctuated (6.24–6.86) and an average biogas of 0.574 m3 (505–601 L·day–1) per day was generated from the three experimental waste proportions which would be sufficient to cook three meals per day for 3 to 4 people. The methane gas significantly increased (P < 0.05) while the carbon-dioxide significantly decreased (P < 0.05) at the peak of the biogas production. The generated biogas significantly cooked (P < 0.05) faster than kerosene, but not faster than liquefied petroleum gas. The flammable biogas generation and high significant (P <0.05) percentage change in the physico-chemical properties of the wastes after digestion implied high efficiency performance of the digesters modified from the plastic tanks.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/21/2020-RAE","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/21/2020-RAE","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
The efficiency of three modified plastic digesters (3.6 m3 each) using food waste for biogas generation in cooking food was evaluated. The experiment was laid out based on a completely randomised design. A plastic tank was modified as a biodegradation system for food waste digestion to generate a biogas. The biochemical and chemical oxygen demand ranged from 44.58 to 49.62% and 130.42 to 139.20%, respectively, before digestion, but decreased significantly (P < 0.05) after digestion. The pH of the fermenting slurry fluctuated (6.24–6.86) and an average biogas of 0.574 m3 (505–601 L·day–1) per day was generated from the three experimental waste proportions which would be sufficient to cook three meals per day for 3 to 4 people. The methane gas significantly increased (P < 0.05) while the carbon-dioxide significantly decreased (P < 0.05) at the peak of the biogas production. The generated biogas significantly cooked (P < 0.05) faster than kerosene, but not faster than liquefied petroleum gas. The flammable biogas generation and high significant (P <0.05) percentage change in the physico-chemical properties of the wastes after digestion implied high efficiency performance of the digesters modified from the plastic tanks.
期刊介绍:
Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.