{"title":"Bandwidth Selection for Kernel Generalized Regression Neural Networks in Identification of Hammerstein Systems","authors":"Jiaqing Lv, M. Pawlak","doi":"10.2478/jaiscr-2021-0011","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses the issue of data-driven smoothing parameter (bandwidth) selection in the context of nonparametric system identification of dynamic systems. In particular, we examine the identification problem of the block-oriented Hammerstein cascade system. A class of kernel-type Generalized Regression Neural Networks (GRNN) is employed as the identification algorithm. The statistical accuracy of the kernel GRNN estimate is critically influenced by the choice of the bandwidth. Given the need of data-driven bandwidth specification we propose several automatic selection methods that are compared by means of simulation studies. Our experiments reveal that the method referred to as the partitioned cross-validation algorithm can be recommended as the practical procedure for the bandwidth choice for the kernel GRNN estimate in terms of its statistical accuracy and implementation aspects.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"11 1","pages":"181 - 194"},"PeriodicalIF":3.3000,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2021-0011","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This paper addresses the issue of data-driven smoothing parameter (bandwidth) selection in the context of nonparametric system identification of dynamic systems. In particular, we examine the identification problem of the block-oriented Hammerstein cascade system. A class of kernel-type Generalized Regression Neural Networks (GRNN) is employed as the identification algorithm. The statistical accuracy of the kernel GRNN estimate is critically influenced by the choice of the bandwidth. Given the need of data-driven bandwidth specification we propose several automatic selection methods that are compared by means of simulation studies. Our experiments reveal that the method referred to as the partitioned cross-validation algorithm can be recommended as the practical procedure for the bandwidth choice for the kernel GRNN estimate in terms of its statistical accuracy and implementation aspects.
期刊介绍:
Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.