Rohan P. singh;Zhaoming Xie;Pierre Gergondet;Fumio Kanehiro
{"title":"Learning Bipedal Walking for Humanoids With Current Feedback","authors":"Rohan P. singh;Zhaoming Xie;Pierre Gergondet;Fumio Kanehiro","doi":"10.1109/ACCESS.2023.3301175","DOIUrl":null,"url":null,"abstract":"Recent advances in deep reinforcement learning (RL) based techniques combined with training in simulation have offered a new approach to developing robust controllers for legged robots. However, the application of such approaches to real hardware has largely been limited to quadrupedal robots with direct-drive actuators and light-weight bipedal robots with low gear-ratio transmission systems. Application to real, life-sized humanoid robots has been less common arguably due to a large sim2real gap. In this paper, we present an approach for effectively overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level. Our key idea is to utilize the current feedback from the actuators on the real robot, after training the policy in a simulation environment artificially degraded with poor torque-tracking. Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion. Through ablations, we also show that a feedforward policy architecture combined with targeted dynamics randomization is sufficient for zero-shot sim2real success, thus eliminating the need for computationally expensive, memory-based network architectures. Finally, we validate the robustness of the proposed RL policy by comparing its performance against a conventional model-based controller for walking on uneven terrain with the real robot.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"11 ","pages":"82013-82023"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6287639/10005208/10201853.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10201853/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Recent advances in deep reinforcement learning (RL) based techniques combined with training in simulation have offered a new approach to developing robust controllers for legged robots. However, the application of such approaches to real hardware has largely been limited to quadrupedal robots with direct-drive actuators and light-weight bipedal robots with low gear-ratio transmission systems. Application to real, life-sized humanoid robots has been less common arguably due to a large sim2real gap. In this paper, we present an approach for effectively overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level. Our key idea is to utilize the current feedback from the actuators on the real robot, after training the policy in a simulation environment artificially degraded with poor torque-tracking. Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion. Through ablations, we also show that a feedforward policy architecture combined with targeted dynamics randomization is sufficient for zero-shot sim2real success, thus eliminating the need for computationally expensive, memory-based network architectures. Finally, we validate the robustness of the proposed RL policy by comparing its performance against a conventional model-based controller for walking on uneven terrain with the real robot.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.