Murugesan Johnson, K. Kavitha, D. Chalishajar, Muslim Malik, V. Vijayakumar, A. Shukla
{"title":"An analysis of approximate controllability for Hilfer fractional delay differential equations of Sobolev type without uniqueness","authors":"Murugesan Johnson, K. Kavitha, D. Chalishajar, Muslim Malik, V. Vijayakumar, A. Shukla","doi":"10.15388/namc.2023.28.32118","DOIUrl":null,"url":null,"abstract":"This study focused on the approximate controllability results for the Hilfer fractional delay evolution equations of the Sobolev type without uniqueness. Initially, the Lipschitz condition is derived from the hypothesis, which is represented by a measure of noncompactness, in particular, nonlinearity. We also examined the continuity of the solution map of the Sobolev type of Hilfer fractional delay evolution equation and the topological structure of the solution set. Furthermore, we prove the approximate controllability of the fractional evolution equation of the Sobolev type with delay. Finally, we provided an example to illustrate the theoretical results.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
This study focused on the approximate controllability results for the Hilfer fractional delay evolution equations of the Sobolev type without uniqueness. Initially, the Lipschitz condition is derived from the hypothesis, which is represented by a measure of noncompactness, in particular, nonlinearity. We also examined the continuity of the solution map of the Sobolev type of Hilfer fractional delay evolution equation and the topological structure of the solution set. Furthermore, we prove the approximate controllability of the fractional evolution equation of the Sobolev type with delay. Finally, we provided an example to illustrate the theoretical results.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.