An analysis of approximate controllability for Hilfer fractional delay differential equations of Sobolev type without uniqueness

IF 2.6 3区 数学 Q1 MATHEMATICS, APPLIED
Murugesan Johnson, K. Kavitha, D. Chalishajar, Muslim Malik, V. Vijayakumar, A. Shukla
{"title":"An analysis of approximate controllability for Hilfer fractional delay differential equations of Sobolev type without uniqueness","authors":"Murugesan Johnson, K. Kavitha, D. Chalishajar, Muslim Malik, V. Vijayakumar, A. Shukla","doi":"10.15388/namc.2023.28.32118","DOIUrl":null,"url":null,"abstract":"This study focused on the approximate controllability results for the Hilfer fractional delay evolution equations of the Sobolev type without uniqueness. Initially, the Lipschitz condition is derived from the hypothesis, which is represented by a measure of noncompactness, in particular, nonlinearity. We also examined the continuity of the solution map of the Sobolev type of Hilfer fractional delay evolution equation and the topological structure of the solution set. Furthermore, we prove the approximate controllability of the fractional evolution equation of the Sobolev type with delay. Finally, we provided an example to illustrate the theoretical results.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

This study focused on the approximate controllability results for the Hilfer fractional delay evolution equations of the Sobolev type without uniqueness. Initially, the Lipschitz condition is derived from the hypothesis, which is represented by a measure of noncompactness, in particular, nonlinearity. We also examined the continuity of the solution map of the Sobolev type of Hilfer fractional delay evolution equation and the topological structure of the solution set. Furthermore, we prove the approximate controllability of the fractional evolution equation of the Sobolev type with delay. Finally, we provided an example to illustrate the theoretical results.
无唯一性Sobolev型Hilfer分数阶时滞微分方程的近似可控性分析
研究了无唯一性Sobolev型Hilfer分数阶时滞演化方程的近似可控性结果。首先,Lipschitz条件由假设推导而来,该假设用非紧性,特别是非线性的度量来表示。我们还研究了Hilfer分数阶延迟演化方程Sobolev型解映射的连续性和解集的拓扑结构。进一步证明了具有时滞的Sobolev型分数阶演化方程的近似可控性。最后,通过实例对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Modelling and Control
Nonlinear Analysis-Modelling and Control MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.80
自引率
10.00%
发文量
63
审稿时长
9.6 months
期刊介绍: The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology. The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信