{"title":"System dynamics modelling of mixed recycling mode based on contract: a case study of online and offline recycling of E-waste in China","authors":"Shi-di Miao, Di Liu, Junfeng Ma, Feng Tian","doi":"10.1080/13873954.2020.1762096","DOIUrl":null,"url":null,"abstract":"ABSTRACT As the pace of global sustainable economic development accelerates, increasing attention has been brought to the reutilization of waste electronic resources (E-waste). As the leading manufacturer and consumer of electronic products, China has now become the largest producer of E-waste around the world. Considering the current state of recycling mode in China, Huawei Technologies Co. Ltd. (Huawei) took the lead in implementing a blended operation model of manufacturer-led recycling model (offline recycling, OffR) and retailer-led recycling model (online recycling, OnR). In order for the improvement of recycling efficiency for Huawei and other telecommunication companies, this paper constructs a closed-loop network model of mixed recycling (MR) between manufacturers and retailers based on contract, where manufacturers and retailers jointly recycle E-waste for the provision of E-waste to manufacturers for remanufacturing. In this paper, the MR model is compared against the OffR model and OnR model to evaluate the recycling allocation mechanism run by both manufacturer and retailer and then a contract-based, closed-loop network model of mixed recycling between manufacturers and retailers is developed on the basis of obtaining the optimal MR model. By means of simulation analysis, the optimal recycling allocation ratio between manufacturer and retailer is determined. The results obtained from this study are expected to help manufacturers and retailers with effective negotiation and cooperation, so as to improve the efficiency of E-waste recycling while promoting sustainable development and reducing the economic losses caused by price competition to the minimum. This research contributes to not only the waste management studies but also the recycling of E-waste in China and other countries.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1762096","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1762096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT As the pace of global sustainable economic development accelerates, increasing attention has been brought to the reutilization of waste electronic resources (E-waste). As the leading manufacturer and consumer of electronic products, China has now become the largest producer of E-waste around the world. Considering the current state of recycling mode in China, Huawei Technologies Co. Ltd. (Huawei) took the lead in implementing a blended operation model of manufacturer-led recycling model (offline recycling, OffR) and retailer-led recycling model (online recycling, OnR). In order for the improvement of recycling efficiency for Huawei and other telecommunication companies, this paper constructs a closed-loop network model of mixed recycling (MR) between manufacturers and retailers based on contract, where manufacturers and retailers jointly recycle E-waste for the provision of E-waste to manufacturers for remanufacturing. In this paper, the MR model is compared against the OffR model and OnR model to evaluate the recycling allocation mechanism run by both manufacturer and retailer and then a contract-based, closed-loop network model of mixed recycling between manufacturers and retailers is developed on the basis of obtaining the optimal MR model. By means of simulation analysis, the optimal recycling allocation ratio between manufacturer and retailer is determined. The results obtained from this study are expected to help manufacturers and retailers with effective negotiation and cooperation, so as to improve the efficiency of E-waste recycling while promoting sustainable development and reducing the economic losses caused by price competition to the minimum. This research contributes to not only the waste management studies but also the recycling of E-waste in China and other countries.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.