Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-01-25 DOI:10.3390/stats6010012
A. Robitzsch
{"title":"Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning","authors":"A. Robitzsch","doi":"10.3390/stats6010012","DOIUrl":null,"url":null,"abstract":"In the social sciences, the performance of two groups is frequently compared based on a cognitive test involving binary items. Item response models are often utilized for comparing the two groups. However, the presence of differential item functioning (DIF) can impact group comparisons. In order to avoid the biased estimation of groups, appropriate statistical methods for handling differential item functioning are required. This article compares the performance-regularized estimation and several robust linking approaches in three simulation studies that address the one-parameter logistic (1PL) and two-parameter logistic (2PL) models, respectively. It turned out that robust linking approaches are at least as effective as the regularized estimation approach in most of the conditions in the simulation studies.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

In the social sciences, the performance of two groups is frequently compared based on a cognitive test involving binary items. Item response models are often utilized for comparing the two groups. However, the presence of differential item functioning (DIF) can impact group comparisons. In order to avoid the biased estimation of groups, appropriate statistical methods for handling differential item functioning are required. This article compares the performance-regularized estimation and several robust linking approaches in three simulation studies that address the one-parameter logistic (1PL) and two-parameter logistic (2PL) models, respectively. It turned out that robust linking approaches are at least as effective as the regularized estimation approach in most of the conditions in the simulation studies.
比较1PL和2PL模型中存在稀疏一致微分项函数的两组连接的鲁棒连接和正则化估计
在社会科学中,两组人的表现经常基于涉及二元项目的认知测试进行比较。项目反应模型通常用于比较两组。然而,差异项目功能(DIF)的存在会影响群体比较。为了避免对群体的偏估计,需要适当的统计方法来处理不同的项目功能。本文在三个分别处理单参数逻辑(1PL)和双参数逻辑(2PL)模型的仿真研究中比较了性能正则化估计和几种鲁棒连接方法。结果表明,在仿真研究的大多数情况下,鲁棒连接方法至少与正则化估计方法一样有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信