{"title":"On the birationality of the Hessian maps of quartic curves and cubic surfaces","authors":"A. Dimca, Gabriel Sticlaru","doi":"10.4171/rlm/991","DOIUrl":null,"url":null,"abstract":"We show that the hessian map of quartic plane curves is a birational morphism onto its image, thus bringing new evidence for a very interesting conjecture of Ciro Ciliberto and Giorgio Ottaviani. Our new approach also yields a simpler proof of the similar property for cubic surfaces, which is already known by the work of these two authors.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/991","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We show that the hessian map of quartic plane curves is a birational morphism onto its image, thus bringing new evidence for a very interesting conjecture of Ciro Ciliberto and Giorgio Ottaviani. Our new approach also yields a simpler proof of the similar property for cubic surfaces, which is already known by the work of these two authors.
期刊介绍:
The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.