Rectilinear Vortex Thread in a Radially Nonhomogeneous Bingham Solid

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
V. A. Banko, D. V. Georgievskii
{"title":"Rectilinear Vortex Thread in a Radially Nonhomogeneous Bingham Solid","authors":"V. A. Banko,&nbsp;D. V. Georgievskii","doi":"10.1134/S1061920823030019","DOIUrl":null,"url":null,"abstract":"<p> We study an initial boundary value problem of axially symmetric one-dimensional unsteady shear in the viscoplastic space (a Bingham solid) initiated by a rectilinear vortex thread located along the symmetry axis. The force intensity of the thread is represented by a given monotone piecewise continuous function of time. The density and the dynamical viscosity of the medium are constant, and the yield point is a given piecewise continuous function of radius. We find similar and quasisimilar expressions for the tangent stress and for the rotating component of the velocity both in viscoplastic shear domains and in rigid zones. We show that the vortex thread with time-bounded force intensity may generate a viscoplastic shear only inside a cylinder of certain radius. If the thread intensity growth linearly with time, then the radius of the shear domain grows proportionally to <span>\\(\\sqrt t\\)</span>. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 3","pages":"275 - 279"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823030019","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study an initial boundary value problem of axially symmetric one-dimensional unsteady shear in the viscoplastic space (a Bingham solid) initiated by a rectilinear vortex thread located along the symmetry axis. The force intensity of the thread is represented by a given monotone piecewise continuous function of time. The density and the dynamical viscosity of the medium are constant, and the yield point is a given piecewise continuous function of radius. We find similar and quasisimilar expressions for the tangent stress and for the rotating component of the velocity both in viscoplastic shear domains and in rigid zones. We show that the vortex thread with time-bounded force intensity may generate a viscoplastic shear only inside a cylinder of certain radius. If the thread intensity growth linearly with time, then the radius of the shear domain grows proportionally to \(\sqrt t\).

径向非均匀Bingham固体中的直线涡旋螺纹
研究了粘塑性空间(Bingham固体)中由沿对称轴的直线涡旋螺纹引发的一维非定常剪切的初边值问题。螺纹的受力强度用给定的单调分段连续时间函数表示。介质的密度和动态粘度是恒定的,屈服点是给定的半径分段连续函数。在粘塑性剪切区和刚性区,我们发现切线应力和速度的旋转分量的表达式是相似的和准相似的。结果表明,力强度有时间限制的涡旋螺纹只能在一定半径的圆柱体内产生粘塑性剪切。如果螺纹强度随时间线性增长,则剪切域半径与\(\sqrt t\)成比例增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信