{"title":"A comprehensive comparison of total-order estimators for global sensitivity analysis","authors":"A. Puy, W. Becker, S. L. Piano, Andrea Saltelli","doi":"10.1615/Int.J.UncertaintyQuantification.2021038133","DOIUrl":null,"url":null,"abstract":"Sensitivity analysis helps identify which model inputs convey the most uncertainty to the model output. One of the most authoritative measures in global sensitivity analysis is the Sobol' total-order index, which can be computed with several different estimators. Although previous comparisons exist, it is hard to know which estimator performs best since the results are contingent on the benchmark setting defined by the analyst (the sampling method, the distribution of the model inputs, the number of model runs, the test function or model and its dimensionality, the weight of higher order effects or the performance measure selected). Here we compare several total-order estimators in an eight-dimension hypercube where these benchmark parameters are treated as random parameters. This arrangement significantly relaxes the dependency of the results on the benchmark design. We observe that the most accurate estimators are Razavi and Gupta's, Jansen's or Janon/Monod's for factor prioritization, and Jansen's, Janon/Monod's or Azzini and Rosati's for approaching the\"true\"total-order indices. The rest lag considerably behind. Our work helps analysts navigate the myriad of total-order formulae by reducing the uncertainty in the selection of the most appropriate estimator.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021038133","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19
Abstract
Sensitivity analysis helps identify which model inputs convey the most uncertainty to the model output. One of the most authoritative measures in global sensitivity analysis is the Sobol' total-order index, which can be computed with several different estimators. Although previous comparisons exist, it is hard to know which estimator performs best since the results are contingent on the benchmark setting defined by the analyst (the sampling method, the distribution of the model inputs, the number of model runs, the test function or model and its dimensionality, the weight of higher order effects or the performance measure selected). Here we compare several total-order estimators in an eight-dimension hypercube where these benchmark parameters are treated as random parameters. This arrangement significantly relaxes the dependency of the results on the benchmark design. We observe that the most accurate estimators are Razavi and Gupta's, Jansen's or Janon/Monod's for factor prioritization, and Jansen's, Janon/Monod's or Azzini and Rosati's for approaching the"true"total-order indices. The rest lag considerably behind. Our work helps analysts navigate the myriad of total-order formulae by reducing the uncertainty in the selection of the most appropriate estimator.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.