{"title":"The Number of Maximal Independent Sets in Quasi-Tree Graphs and Quasi-Forest Graphs","authors":"Jenq-Jong Lin, Min-Jen Jou","doi":"10.4236/OJDM.2017.73013","DOIUrl":null,"url":null,"abstract":"A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex x ∈V(G) such that G − x is a tree (respectively, forest). In this paper, we survey on the large numbers of maximal independent sets among all trees, forests, quasi-trees and quasi-forests. In addition, we further look into the problem of determining the third largest number of maximal independent sets among all quasi-trees and quasi-forests. Extremal graphs achieving these values are also given.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"07 1","pages":"134-147"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2017.73013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex x ∈V(G) such that G − x is a tree (respectively, forest). In this paper, we survey on the large numbers of maximal independent sets among all trees, forests, quasi-trees and quasi-forests. In addition, we further look into the problem of determining the third largest number of maximal independent sets among all quasi-trees and quasi-forests. Extremal graphs achieving these values are also given.