Critical F129 and L138 in loop III of bile salt hydrolase (BSH) in Lactobacillus plantarum B14 are essential for the catalytic activity and substrate specificity
IF 1.8 4区 农林科学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Critical F129 and L138 in loop III of bile salt hydrolase (BSH) in Lactobacillus plantarum B14 are essential for the catalytic activity and substrate specificity","authors":"M. Öztürk, Cansu Önal, Ndeye Mareme Ba","doi":"10.1080/08905436.2019.1673172","DOIUrl":null,"url":null,"abstract":"ABSTRACT Bile salt hydrolase (BSH) is a gut-bacterial enzyme that influences human health by altering the host fat digestion and cellular energy generation. BSH is essential for deconjugation of the glycine or taurine-conjugated bile salts in the small intestine of humans. Therefore, BSH may be a key microbiome target for the designing of new measures to control some diseases in humans. BSHs, a member of the N-terminal nucleophile (Ntn) hydrolase superfamily, exhibit higher variation in substrate specificity. The phenylalanine-129 (F129) and leucine-138 (L138) in loop III of BSH, thought to be responsible for substrate specificity, are partially conserved in this superfamily. In this study, the aromatic-hydrophobic F129 and aliphatic-hydrophobic L138 of C-terminally His-tagged BSH from Lactobacillus plantarum B14 (LbBSH) was substituted for aliphatic-hydrophobic isoleucine (I) and negatively charged polar glutamate (E) amino acid, respectively, by site-directed mutagenesis and characterized using an Escherichia coli BLR(DE3) expression system. Although both mutations resulted in an assembled and stable recombinant BSHs (rBSHs), they altered the catalytic activity and substrate specificity of rBSH. This is the first experimental finding which confirmed that F129 and L138 were critical amino acids for the catalytic activity and substrate specificity turnover of BSH.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"33 1","pages":"325 - 337"},"PeriodicalIF":1.8000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08905436.2019.1673172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2019.1673172","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Bile salt hydrolase (BSH) is a gut-bacterial enzyme that influences human health by altering the host fat digestion and cellular energy generation. BSH is essential for deconjugation of the glycine or taurine-conjugated bile salts in the small intestine of humans. Therefore, BSH may be a key microbiome target for the designing of new measures to control some diseases in humans. BSHs, a member of the N-terminal nucleophile (Ntn) hydrolase superfamily, exhibit higher variation in substrate specificity. The phenylalanine-129 (F129) and leucine-138 (L138) in loop III of BSH, thought to be responsible for substrate specificity, are partially conserved in this superfamily. In this study, the aromatic-hydrophobic F129 and aliphatic-hydrophobic L138 of C-terminally His-tagged BSH from Lactobacillus plantarum B14 (LbBSH) was substituted for aliphatic-hydrophobic isoleucine (I) and negatively charged polar glutamate (E) amino acid, respectively, by site-directed mutagenesis and characterized using an Escherichia coli BLR(DE3) expression system. Although both mutations resulted in an assembled and stable recombinant BSHs (rBSHs), they altered the catalytic activity and substrate specificity of rBSH. This is the first experimental finding which confirmed that F129 and L138 were critical amino acids for the catalytic activity and substrate specificity turnover of BSH.
期刊介绍:
Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production.
Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published.
Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.