{"title":"Optimizing climate related global development pathways in the global calculator using Monte Carlo Markov chains and genetic algorithms","authors":"J. García, O. Mwabonje, J. Woods","doi":"10.1080/17583004.2022.2133014","DOIUrl":null,"url":null,"abstract":"Abstract Novel pathway optimization methods are presented using the 'Global Calculator’ model and webtool 1 to goal-seek within a set of optimization constraints. The Global Calculator (GC) is a model used to forecast climate-related develop pathways for the world’s energy, food and land systems to 2050. The optimization methods enable the GC’s user to specify optimization constraints and return a combination of input parameters that satisfy them. The optimization methods evaluated aim to address the challenge of efficiently navigating the GC's ample parameter space (8e70 parameter combinations) using Monte Carlo Markov Chains and genetic algorithms. The optimization methods are used to calculate an optimal input combination of the ‘lever’ settings in the GC that satisfy twelve input constraints while minimizing cumulative CO2 emissions and maximizing GDP output. This optimal development pathway yields a prediction to 2100 of 2,835 GtCO2 cumulative emissions and a 3.7% increase in GDP with respect to the “business as usual” pathway defined by the International Energy Agency, the IEA’s 6DS scenario, a likely extension of current trends. At a similar or lower ambition level as the benchmark scenarios considered to date (distributed effort, consumer reluctance, low action on forests and consumer activism), the optimal pathway shows a significant decrease in CO2 emissions and increased GDP. The chosen optimization method presented here enables the generation of optimal, user defined/constrained, bespoke pathways to sustainability, relying on the Global Calculator’s whole system approach and assumptions.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2022.2133014","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Novel pathway optimization methods are presented using the 'Global Calculator’ model and webtool 1 to goal-seek within a set of optimization constraints. The Global Calculator (GC) is a model used to forecast climate-related develop pathways for the world’s energy, food and land systems to 2050. The optimization methods enable the GC’s user to specify optimization constraints and return a combination of input parameters that satisfy them. The optimization methods evaluated aim to address the challenge of efficiently navigating the GC's ample parameter space (8e70 parameter combinations) using Monte Carlo Markov Chains and genetic algorithms. The optimization methods are used to calculate an optimal input combination of the ‘lever’ settings in the GC that satisfy twelve input constraints while minimizing cumulative CO2 emissions and maximizing GDP output. This optimal development pathway yields a prediction to 2100 of 2,835 GtCO2 cumulative emissions and a 3.7% increase in GDP with respect to the “business as usual” pathway defined by the International Energy Agency, the IEA’s 6DS scenario, a likely extension of current trends. At a similar or lower ambition level as the benchmark scenarios considered to date (distributed effort, consumer reluctance, low action on forests and consumer activism), the optimal pathway shows a significant decrease in CO2 emissions and increased GDP. The chosen optimization method presented here enables the generation of optimal, user defined/constrained, bespoke pathways to sustainability, relying on the Global Calculator’s whole system approach and assumptions.
期刊介绍:
Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology.
The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices.
One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.