Forecasting with Multivariate Threshold Autoregressive Models

Q3 Mathematics
Sergio Calderon, Fabio H. Nieto
{"title":"Forecasting with Multivariate Threshold Autoregressive Models","authors":"Sergio Calderon, Fabio H. Nieto","doi":"10.15446/RCE.V44N2.91356","DOIUrl":null,"url":null,"abstract":"\n \n \nAn important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented. \n \n \n \n  \n \n \n \n \n \n","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V44N2.91356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.  
多元阈值自回归模型预测
时间序列分析的一个重要阶段是预测。然而,非线性时间序列模型中的预测并不像线性时间序列模型那样简单,因为不容易获得条件期望的精确分析。因此,通过贝叶斯方法的预测分布,提出了一种多元阈值自回归(MTAR)模型的预测策略。这一策略为我们提供了对反应和外源载体的预测。本文分析了预测区间的覆盖率和预测分布的可变性。介绍了在水文学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Colombiana De Estadistica
Revista Colombiana De Estadistica STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication. The Editorial Committee assumes that the works submitted for evaluation have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信