Asymptotic behavior of solutions to the Monge-Ampère equations with slow convergence rate at infinity

IF 2.1 2区 数学 Q1 MATHEMATICS
Zixiao Liu, J. Bao
{"title":"Asymptotic behavior of solutions to the Monge-Ampère equations with slow convergence rate at infinity","authors":"Zixiao Liu, J. Bao","doi":"10.1515/ans-2022-0052","DOIUrl":null,"url":null,"abstract":"Abstract We consider the asymptotic behavior of solutions to the Monge-Ampère equations with slow convergence rate at infinity and fulfill previous results under faster convergence rate by Bao et al. [Monge-Ampère equation on exterior domains, Calc. Var PDE. 52 (2015), 39–63]. Different from known results, we obtain the limit of Hessian and/or gradient of solution at infinity relying on the convergence rate. The basic idea is to use a revised level set method, the spherical harmonic expansion, and the iteration method.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"23 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0052","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the asymptotic behavior of solutions to the Monge-Ampère equations with slow convergence rate at infinity and fulfill previous results under faster convergence rate by Bao et al. [Monge-Ampère equation on exterior domains, Calc. Var PDE. 52 (2015), 39–63]. Different from known results, we obtain the limit of Hessian and/or gradient of solution at infinity relying on the convergence rate. The basic idea is to use a revised level set method, the spherical harmonic expansion, and the iteration method.
无穷远处慢收敛速度Monge-Ampère方程解的渐近性
摘要我们考虑了在无穷远处具有慢收敛速度的Monge-Ampère方程解的渐近行为,并实现了Bao等人在更快收敛速度下的先前结果。[Monge-Ampére方程在外域上,Calc.Var PDE.52(2015),39–63]。与已知结果不同的是,我们依赖于收敛速度获得了无穷远处解的Hessian极限和/或梯度。其基本思想是使用修正的水平集方法、球面调和展开和迭代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信