Development of Nanoparticles Pegagan Leaves Ethanolic Extract (centella asiatica (L.) Urban) using Variation Concentration of Poly-Lactic-CO-Glycolic Acid (PLGA) Polymer

E. F. Apriani, M. Mardiyanto, Rika Destiana
{"title":"Development of Nanoparticles Pegagan Leaves Ethanolic Extract (centella asiatica (L.) Urban) using Variation Concentration of Poly-Lactic-CO-Glycolic Acid (PLGA) Polymer","authors":"E. F. Apriani, M. Mardiyanto, Rika Destiana","doi":"10.22146/mot.73513","DOIUrl":null,"url":null,"abstract":"Pegagan is a plant that plays an important role in health because of its secondary metabolite. However, many secondary metabolites tend to be unstable when exposed to UV light and oxygen such as flavonoid and terpenoid. The purpose of this study was to formulate the ethanolic extract of pegagan leaves into nanoparticle preparations to increase the stability of the extract. Nanoparticle preparations were made using the emulsion solvent evaporation method using Poly-Lactic-Co-Glycolic Acid (PLGA) and polyvinyl alcohol (PVA). PLGA acts as a polymer that will coat the extract and PVA as a stabilizer. Variations in the concentration of PLGA used were 50 mg, 75 mg, and 100 mg, while the concentration of PVA used was 40 mg and the extract concentration was 158 mg. Determination of the best formula is done by looking at the results of the percent encapsulation efficiency obtained from the three formulas, namely 93.68%, 85.35%, and 88.76%, respectively. Based on these results, formula 1 was determined as the best formula. The particle size obtained in the best formula was 288.1667±3.4195 nm, the polydispersity index (PDI) was 0.371±0.0045 and the zeta potential value was -10.6333±0.1154. A physical stability test (cycling test method) of the best formula found a decrease in pH of 0.54 and no organoleptic changes or precipitate formed.","PeriodicalId":32438,"journal":{"name":"Majalah Obat Tradisional","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Obat Tradisional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/mot.73513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pegagan is a plant that plays an important role in health because of its secondary metabolite. However, many secondary metabolites tend to be unstable when exposed to UV light and oxygen such as flavonoid and terpenoid. The purpose of this study was to formulate the ethanolic extract of pegagan leaves into nanoparticle preparations to increase the stability of the extract. Nanoparticle preparations were made using the emulsion solvent evaporation method using Poly-Lactic-Co-Glycolic Acid (PLGA) and polyvinyl alcohol (PVA). PLGA acts as a polymer that will coat the extract and PVA as a stabilizer. Variations in the concentration of PLGA used were 50 mg, 75 mg, and 100 mg, while the concentration of PVA used was 40 mg and the extract concentration was 158 mg. Determination of the best formula is done by looking at the results of the percent encapsulation efficiency obtained from the three formulas, namely 93.68%, 85.35%, and 88.76%, respectively. Based on these results, formula 1 was determined as the best formula. The particle size obtained in the best formula was 288.1667±3.4195 nm, the polydispersity index (PDI) was 0.371±0.0045 and the zeta potential value was -10.6333±0.1154. A physical stability test (cycling test method) of the best formula found a decrease in pH of 0.54 and no organoleptic changes or precipitate formed.
积雪草(centella asiatica, L.)叶乙醇提取物纳米颗粒的制备聚乳酸- co -乙醇酸(PLGA)聚合物的浓度变化
Pegagan是一种因其次生代谢物而在健康中起重要作用的植物。然而,许多次生代谢物,如黄酮类和萜类,在暴露于紫外线和氧气时往往不稳定。本研究的目的是将聚山楂叶乙醇提取物制成纳米颗粒制剂,以提高提取物的稳定性。以聚乳酸-羟基乙酸(PLGA)和聚乙烯醇(PVA)为原料,采用乳液溶剂蒸发法制备了纳米颗粒。PLGA作为一种聚合物,将包裹在提取物上,PVA作为稳定剂。使用的PLGA浓度变化为50 mg, 75 mg和100 mg,而使用的PVA浓度为40 mg,提取物浓度为158 mg。考察3种配方的包封率分别为93.68%、85.35%、88.76%,确定最佳配方。在此基础上,确定了公式1为最佳配方。最佳配方的粒径为288.1667±3.4195 nm, PDI为0.371±0.0045,zeta电位值为-10.6333±0.1154。对最佳配方进行物理稳定性试验(循环试验法),发现pH值降低0.54,没有感官变化或沉淀形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
10
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信