Estimation on unevenly spaced time series

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liudas Giraitis, Fulvia Marotta
{"title":"Estimation on unevenly spaced time series","authors":"Liudas Giraitis,&nbsp;Fulvia Marotta","doi":"10.1111/jtsa.12704","DOIUrl":null,"url":null,"abstract":"<p>In many different fields realizations of stationary time series might be recorded at irregular points in time, resulting in observed unevenly spaced samples. These missing observations can happen for several reasons, depending on the mechanisms that record the data or external conditions that force the missing observations. In this article, we first focus on the question if we can estimate the mean of a stationary time series when data are not equally spaced. We show that any unevenly spaced sample can be used to estimate the mean of an underlying stationary linear time series. Specifically, we do not impose any restrictions on sampling structure and times, as long as they are independent of the underlying time series. We provide an expression for the sample mean estimator and we establish its asymptotic properties and the central limit theorem. Subsequently we studentize estimation which allows to build confidence intervals for the mean. Finite sample properties of the estimator for the mean are investigated in a Monte Carlo study which confirms good performance of such estimation procedure.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12704","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In many different fields realizations of stationary time series might be recorded at irregular points in time, resulting in observed unevenly spaced samples. These missing observations can happen for several reasons, depending on the mechanisms that record the data or external conditions that force the missing observations. In this article, we first focus on the question if we can estimate the mean of a stationary time series when data are not equally spaced. We show that any unevenly spaced sample can be used to estimate the mean of an underlying stationary linear time series. Specifically, we do not impose any restrictions on sampling structure and times, as long as they are independent of the underlying time series. We provide an expression for the sample mean estimator and we establish its asymptotic properties and the central limit theorem. Subsequently we studentize estimation which allows to build confidence intervals for the mean. Finite sample properties of the estimator for the mean are investigated in a Monte Carlo study which confirms good performance of such estimation procedure.

非均匀间隔时间序列的估计
在许多不同的领域中,平稳时间序列的实现可能记录在不规则的时间点上,从而导致观察到的样本间隔不均匀。这些缺失的观测可能有多种原因,这取决于记录数据的机制或迫使缺失观测的外部条件。在本文中,我们首先关注的问题是,当数据不是等间距时,我们是否可以估计平稳时间序列的平均值。我们表明,任何不均匀间隔的样本都可以用来估计底层平稳线性时间序列的平均值。具体来说,我们对采样结构和时间没有任何限制,只要它们独立于底层时间序列。给出了样本均值估计量的一个表达式,并建立了它的渐近性质和中心极限定理。随后,我们对估计进行研究,从而为平均值建立置信区间。用蒙特卡罗方法研究了均值估计器的有限样本性质,证实了这种估计方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信