{"title":"Estimation on unevenly spaced time series","authors":"Liudas Giraitis, Fulvia Marotta","doi":"10.1111/jtsa.12704","DOIUrl":null,"url":null,"abstract":"<p>In many different fields realizations of stationary time series might be recorded at irregular points in time, resulting in observed unevenly spaced samples. These missing observations can happen for several reasons, depending on the mechanisms that record the data or external conditions that force the missing observations. In this article, we first focus on the question if we can estimate the mean of a stationary time series when data are not equally spaced. We show that any unevenly spaced sample can be used to estimate the mean of an underlying stationary linear time series. Specifically, we do not impose any restrictions on sampling structure and times, as long as they are independent of the underlying time series. We provide an expression for the sample mean estimator and we establish its asymptotic properties and the central limit theorem. Subsequently we studentize estimation which allows to build confidence intervals for the mean. Finite sample properties of the estimator for the mean are investigated in a Monte Carlo study which confirms good performance of such estimation procedure.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12704","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In many different fields realizations of stationary time series might be recorded at irregular points in time, resulting in observed unevenly spaced samples. These missing observations can happen for several reasons, depending on the mechanisms that record the data or external conditions that force the missing observations. In this article, we first focus on the question if we can estimate the mean of a stationary time series when data are not equally spaced. We show that any unevenly spaced sample can be used to estimate the mean of an underlying stationary linear time series. Specifically, we do not impose any restrictions on sampling structure and times, as long as they are independent of the underlying time series. We provide an expression for the sample mean estimator and we establish its asymptotic properties and the central limit theorem. Subsequently we studentize estimation which allows to build confidence intervals for the mean. Finite sample properties of the estimator for the mean are investigated in a Monte Carlo study which confirms good performance of such estimation procedure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.