Yasser Almadany, K. M. Saffer, Ahmed K. Jameil, Saad Albawi
{"title":"A novel algorithm for estimation of Twitter users location using public available information","authors":"Yasser Almadany, K. M. Saffer, Ahmed K. Jameil, Saad Albawi","doi":"10.21307/ijssis-2020-012","DOIUrl":null,"url":null,"abstract":"Abstract Social media networks are an attractive and hot research area in the big data community because of their numerous active users. One of the most widely studied topics in social networks is the prediction from the public available data. Recently, researchers have successfully predicted many statistical and human properties from social media networks using different machine learning algorithms. In this paper, a new efficient and accurate algorithm is proposed to predict the country location of a Twitter user using his or her public information only. The proposed algorithm employs the public information of the Twitter user and that of his or her followers and friends to predict his or her location without using GPS data. A convenient data set of Twitter users is gathered and used to test our proposed algorithm using KNIME software. The proposed algorithm is compared with other state-of-the-art algorithms, and results showed that our proposed algorithm significantly outperforms other location detection algorithms by using Twitter users from different countries.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"13 1","pages":"1 - 10"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2020-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Social media networks are an attractive and hot research area in the big data community because of their numerous active users. One of the most widely studied topics in social networks is the prediction from the public available data. Recently, researchers have successfully predicted many statistical and human properties from social media networks using different machine learning algorithms. In this paper, a new efficient and accurate algorithm is proposed to predict the country location of a Twitter user using his or her public information only. The proposed algorithm employs the public information of the Twitter user and that of his or her followers and friends to predict his or her location without using GPS data. A convenient data set of Twitter users is gathered and used to test our proposed algorithm using KNIME software. The proposed algorithm is compared with other state-of-the-art algorithms, and results showed that our proposed algorithm significantly outperforms other location detection algorithms by using Twitter users from different countries.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity