Foozieh Moghadami, R. Hosseini, J. Fooladi, M. Kalantari
{"title":"Optimization of Coenzyme Q10 Production by Gluconobacter japonicus FM10 Using Response Surface Methodology","authors":"Foozieh Moghadami, R. Hosseini, J. Fooladi, M. Kalantari","doi":"10.30491/JABR.2021.130940","DOIUrl":null,"url":null,"abstract":"Introduction: Coenzyme Q10 is one of the antioxidants with a worldwide market. Nowadays the coenzymeQ10 production has been considered by fermentation using microorganisms. In this study, the Response Surface Methodology was used to optimize culture composition for coenzyme Q10 production by a previously isolated bacterium, Gluconobacter japonicus FM10. Materials and methods: A central composite design was employed to optimize the culture composition including sorbitol, yeast extract, peptone, KH2PO4, and MgSO4 for coenzyme Q10 production. The dry cell weight and coenzymeQ10 concentration were monitored as response variables and the desirability function approach was applied to obtain the optimum level for each factor. Results: Results showed that an average, 3 mg/L of coenzyme Q10 was obtained when the optimized culture composition was employed (110 g/L of sorbitol, 25 g/L of yeast extract, 35 g/L of peptone, 0.5 g/L of KH2PO4, and 0.55 g/L of MgSO4). In addition, the expected dry cell weight reached 6 g/L in the presence of 90 g/L of sorbitol, 17.5 g/L of yeast extract, 35 g/L of peptone, 0 g/L of KH2PO4, and 1.7 g/L of MgSO4. Conclusions: The results of regression analysis revealed that the concentrations of peptone and sorbitol were the most effective factors in producing coenzyme Q10 and dry cell weight, respectively.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":"8 1","pages":"172-179"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2021.130940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Coenzyme Q10 is one of the antioxidants with a worldwide market. Nowadays the coenzymeQ10 production has been considered by fermentation using microorganisms. In this study, the Response Surface Methodology was used to optimize culture composition for coenzyme Q10 production by a previously isolated bacterium, Gluconobacter japonicus FM10. Materials and methods: A central composite design was employed to optimize the culture composition including sorbitol, yeast extract, peptone, KH2PO4, and MgSO4 for coenzyme Q10 production. The dry cell weight and coenzymeQ10 concentration were monitored as response variables and the desirability function approach was applied to obtain the optimum level for each factor. Results: Results showed that an average, 3 mg/L of coenzyme Q10 was obtained when the optimized culture composition was employed (110 g/L of sorbitol, 25 g/L of yeast extract, 35 g/L of peptone, 0.5 g/L of KH2PO4, and 0.55 g/L of MgSO4). In addition, the expected dry cell weight reached 6 g/L in the presence of 90 g/L of sorbitol, 17.5 g/L of yeast extract, 35 g/L of peptone, 0 g/L of KH2PO4, and 1.7 g/L of MgSO4. Conclusions: The results of regression analysis revealed that the concentrations of peptone and sorbitol were the most effective factors in producing coenzyme Q10 and dry cell weight, respectively.
期刊介绍:
The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis