Pemetaan untuk Strategi Dakwah di Kota Semarang Menggunakan Pendekatan Data Mining (Mapping for Da'wah Strategy in Semarang City Using Data Mining Approach)

A. Karim, Adeni Adeni, Fitri Fitri, Alifa Nur Fitri, M. Hilmi, Silvia Riskha Fabriar, F. Rachmawati
{"title":"Pemetaan untuk Strategi Dakwah di Kota Semarang Menggunakan Pendekatan Data Mining (Mapping for Da'wah Strategy in Semarang City Using Data Mining Approach)","authors":"A. Karim, Adeni Adeni, Fitri Fitri, Alifa Nur Fitri, M. Hilmi, Silvia Riskha Fabriar, F. Rachmawati","doi":"10.24014/JDR.V32I1.12549","DOIUrl":null,"url":null,"abstract":"This paper aims to explore the potential of da'wah in the city of Semarang with a data mining approach. The data mining approach is carried out by implementing the fuzzy c-means (FCM) algorithm in order to obtain the optimum number of clusters in the potential clustering of da'wah in the city of Semarang. The data used in this study from the Ministry of Religion of the Republic of Indonesia and the Central Statistics Agency (BPS) of Semarang City. The results of the FCM analysis show that the optimum number of clusters is two clusters, where the sub-district in the second cluster is an area with a high potential for da'wah. This study provides information that in effective da'wah activities, certainty and clarity is needed regarding the targets of da'wah through mapping of da'wah in the form of clustering potential da'wah. This can be a consideration of dakwah strategies for the successful implementation of da'wah studies so that an increase in the target behavior of da'wah can be achieved. The application of FCM to get the optimum cluster of potential da'wah in order to produce da'wah mapping is novelty in the field of Islamic studies, especially the science of da'wah.","PeriodicalId":52792,"journal":{"name":"Jurnal Dakwah Risalah","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Dakwah Risalah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/JDR.V32I1.12549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper aims to explore the potential of da'wah in the city of Semarang with a data mining approach. The data mining approach is carried out by implementing the fuzzy c-means (FCM) algorithm in order to obtain the optimum number of clusters in the potential clustering of da'wah in the city of Semarang. The data used in this study from the Ministry of Religion of the Republic of Indonesia and the Central Statistics Agency (BPS) of Semarang City. The results of the FCM analysis show that the optimum number of clusters is two clusters, where the sub-district in the second cluster is an area with a high potential for da'wah. This study provides information that in effective da'wah activities, certainty and clarity is needed regarding the targets of da'wah through mapping of da'wah in the form of clustering potential da'wah. This can be a consideration of dakwah strategies for the successful implementation of da'wah studies so that an increase in the target behavior of da'wah can be achieved. The application of FCM to get the optimum cluster of potential da'wah in order to produce da'wah mapping is novelty in the field of Islamic studies, especially the science of da'wah.
本文旨在利用数据挖掘的方法来探索三宝垄市的“打华”的潜力。采用模糊c均值(FCM)算法进行数据挖掘,以获得三宝垄市达瓦市潜在聚类的最优聚类数。本研究使用的数据来自印度尼西亚共和国宗教部和三宝垄市中央统计局(BPS)。FCM分析结果表明,最优集群数为2个集群,其中第2个集群中的街道是大哇发展潜力较大的区域。本研究通过以聚类潜在数据的形式对数据进行映射,说明在有效的数据活动中,数据活动的目标需要确定性和清晰度。这可以作为达华策略的一个考虑,为达华研究的成功实施提供参考,从而实现达华目标行为的增加。利用FCM得到潜在达瓦的最优聚类,从而生成达瓦图,这在伊斯兰研究领域,特别是达瓦学领域是一个新颖的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信