{"title":"Contact Angle of Nepenthes alata Slippery Zone: Results from Measurement and Model Analysis","authors":"Lixin Wang, Pan Pan, S. Yan, Shiyun Dong","doi":"10.1680/jbibn.21.00019","DOIUrl":null,"url":null,"abstract":"The slippery zone of Nepenthes alata depends on its highly evolved morphology and structure to show remarkable superhydrophobicity, which has gradually become a biomimetic prototype for developing superhydrophobic materials. However, the mechanism governing this phenomenon has not been fully revealed through model analysis. In this paper, the superhydrophobicity of slippery zone is studied by contact angle measurement, morphology/structure examination and model analysis. The slippery zone causes ultrapure water droplet to produce a considerably high contact angle (155.11–158.30°), and has a micro-nano scale hierarchical structures consisting of lunate cells and wax coverings. According to the Cassie-Baxter equation and a self-defined infiltration coefficient, a model was established to analyze the effect of structure characteristic on the contact angle. Analysis result showed that the calculated contact angle (154.67–159.49°) was highly consistent with the measured contact angle, indicating that the established model can quantitatively characterize the relationship between the contact angle and the structure characteristic. Our study provides some evidences to further reveal the superhydrophobic mechanism of Nepenthes alata slippery zone, as well as inspires the biomimetic development of superhydrophobic surfaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The slippery zone of Nepenthes alata depends on its highly evolved morphology and structure to show remarkable superhydrophobicity, which has gradually become a biomimetic prototype for developing superhydrophobic materials. However, the mechanism governing this phenomenon has not been fully revealed through model analysis. In this paper, the superhydrophobicity of slippery zone is studied by contact angle measurement, morphology/structure examination and model analysis. The slippery zone causes ultrapure water droplet to produce a considerably high contact angle (155.11–158.30°), and has a micro-nano scale hierarchical structures consisting of lunate cells and wax coverings. According to the Cassie-Baxter equation and a self-defined infiltration coefficient, a model was established to analyze the effect of structure characteristic on the contact angle. Analysis result showed that the calculated contact angle (154.67–159.49°) was highly consistent with the measured contact angle, indicating that the established model can quantitatively characterize the relationship between the contact angle and the structure characteristic. Our study provides some evidences to further reveal the superhydrophobic mechanism of Nepenthes alata slippery zone, as well as inspires the biomimetic development of superhydrophobic surfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.