$L^p$ coarse Baum–Connes conjecture and $K$-theory for $L^p$ Roe algebras

IF 0.7 2区 数学 Q2 MATHEMATICS
Jianguo Zhang, Dapeng Zhou
{"title":"$L^p$ coarse Baum–Connes conjecture and $K$-theory for $L^p$ Roe algebras","authors":"Jianguo Zhang, Dapeng Zhou","doi":"10.4171/jncg/435","DOIUrl":null,"url":null,"abstract":"In this paper, we verify the $L^p$ coarse Baum-Connes conjecture for spaces with finite asymptotic dimension for $p\\in[1,\\infty)$. We also show that the $K$-theory of $L^p$ Roe algebras are independent of $p\\in(1,\\infty)$ for spaces with finite asymptotic dimension.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/435","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we verify the $L^p$ coarse Baum-Connes conjecture for spaces with finite asymptotic dimension for $p\in[1,\infty)$. We also show that the $K$-theory of $L^p$ Roe algebras are independent of $p\in(1,\infty)$ for spaces with finite asymptotic dimension.
L^p$ Roe代数的粗糙Baum-Connes猜想和K$-理论
本文验证了$p\in[1,\infty)$有限渐近维空间的$L^p$粗Baum-Connes猜想。我们还证明了对于渐近维数有限的空间,$L^p$ Roe代数的$K$ -理论与$p\in(1,\infty)$无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信