{"title":"Bakry-Émery Conditions on Almost Smooth Metric Measure Spaces","authors":"Shouhei Honda","doi":"10.1515/agms-2018-0007","DOIUrl":null,"url":null,"abstract":"Abstract In this short note, we give a sufficient condition for almost smooth compact metric measure spaces to satisfy the Bakry-Émery condition BE(K, N). The sufficient condition is satisfied for the glued space of any two (not necessary same dimensional) closed pointed Riemannian manifolds at their base points. This tells us that the BE condition is strictly weaker than the RCD condition even in this setting, and that the local dimension is not constant even if the space satisfies the BE condition with the coincidence between the induced distance by the Cheeger energy and the original distance. In particular, the glued space gives a first example with a Ricci bound from below in the Bakry-Émery sense, whose local dimension is not constant. We also give a necessary and sufficient condition for such spaces to be RCD(K, N) spaces.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"6 1","pages":"129 - 145"},"PeriodicalIF":0.9000,"publicationDate":"2018-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0007","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract In this short note, we give a sufficient condition for almost smooth compact metric measure spaces to satisfy the Bakry-Émery condition BE(K, N). The sufficient condition is satisfied for the glued space of any two (not necessary same dimensional) closed pointed Riemannian manifolds at their base points. This tells us that the BE condition is strictly weaker than the RCD condition even in this setting, and that the local dimension is not constant even if the space satisfies the BE condition with the coincidence between the induced distance by the Cheeger energy and the original distance. In particular, the glued space gives a first example with a Ricci bound from below in the Bakry-Émery sense, whose local dimension is not constant. We also give a necessary and sufficient condition for such spaces to be RCD(K, N) spaces.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.