Application of Target Detection Algorithm based on Deep Learning in Farmland Pest Recognition

Shi Wenxiu, Li Nianqiang
{"title":"Application of Target Detection Algorithm based on Deep Learning in Farmland Pest Recognition","authors":"Shi Wenxiu, Li Nianqiang","doi":"10.5121/ijaia.2020.11301","DOIUrl":null,"url":null,"abstract":"Combining with deep learning technology, this paper proposes a method of farmland pest recognition based on target detection algorithm, which realizes the automatic recognition of farmland pest and improves the recognition accuracy. First of all, a labeled farm pest database is established; then uses Faster R-CNN algorithm, the model uses the improved Inception network for testing; finally, the proposed target detection model is trained and tested on the farm pest database, with the average precision up to 90.54%.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/ijaia.2020.11301","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2020.11301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Combining with deep learning technology, this paper proposes a method of farmland pest recognition based on target detection algorithm, which realizes the automatic recognition of farmland pest and improves the recognition accuracy. First of all, a labeled farm pest database is established; then uses Faster R-CNN algorithm, the model uses the improved Inception network for testing; finally, the proposed target detection model is trained and tested on the farm pest database, with the average precision up to 90.54%.
基于深度学习的目标检测算法在农田有害生物识别中的应用
结合深度学习技术,提出了一种基于目标检测算法的农田有害生物识别方法,实现了农田有害生物的自动识别,提高了识别精度。首先,建立有标签的农场有害生物数据库;然后采用Faster R-CNN算法,模型采用改进的Inception网络进行测试;最后,在农场有害生物数据库上对所提出的目标检测模型进行了训练和测试,平均精度可达90.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信