Local and uniform moduli of continuity of chi–square processes

Pub Date : 2021-06-01 DOI:10.1214/22-ecp471
M. Marcus, J. Rosen
{"title":"Local and uniform moduli of continuity of chi–square processes","authors":"M. Marcus, J. Rosen","doi":"10.1214/22-ecp471","DOIUrl":null,"url":null,"abstract":"Let { η i ( t ) , t ∈ [0 , 1] } ki =1 be independent copies of η = { η ( t ) , t ∈ [0 , 1] } , a mean zero continuous Gaussian process. Let This paper shows how exact local (at 0) and uniform moduli of continuity (on [0,1]) of Y k can be obtained from the exact local and uniform moduli of continuity of η .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let { η i ( t ) , t ∈ [0 , 1] } ki =1 be independent copies of η = { η ( t ) , t ∈ [0 , 1] } , a mean zero continuous Gaussian process. Let This paper shows how exact local (at 0) and uniform moduli of continuity (on [0,1]) of Y k can be obtained from the exact local and uniform moduli of continuity of η .
分享
查看原文
卡方过程连续性的局部一致模
设{ηi(t),t∈[0,1]}ki=1是η={η(t)、t∈[0],1]}的独立副本,这是一个均值为零的连续高斯过程。设本文证明了如何从η的精确局部和均匀连续模量中获得Y k的精确局部(在0)和均匀连续模(在[0,1]上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信