Alaa Mahran, E. Özliseli, Qingbo Wang, Ilayda Özliseli, R. Bhadane, Chunlin Xu, Xiaoju Wang, J. Rosenholm
{"title":"Semi‐solid 3D printing of mesoporous silica nanoparticle‐incorporated xeno‐free nanomaterial hydrogels for protein delivery","authors":"Alaa Mahran, E. Özliseli, Qingbo Wang, Ilayda Özliseli, R. Bhadane, Chunlin Xu, Xiaoju Wang, J. Rosenholm","doi":"10.1002/nano.202300097","DOIUrl":null,"url":null,"abstract":"Multifunctional biomaterial inks are in high demand for adapting hydrogels in biomedical applications through three‐dimensional (3D) printing. Our previously developed xeno‐free system consisting of anionic cellulose nanofibers (T‐CNF) and methacrylated galactoglucomannan (GGMMA) as a photo(bio)polymer provides high‐performance ink fidelity in extrusion‐based 3D printing. The fusion between nanoparticles and this biomaterial‐ink system is a promising yet challenging avenue worth exploring, due to the colloidal stability of T‐CNF being sensitive to electrostatic interactions. Mesoporous silica nanoparticles (MSNs), with their robust ceramic matrix and fine‐tunable surface chemistries, are well‐established nanocarriers for different biologicals. Here, we fabricated MSNs with different surface modifications resulting in a net surface charge ranging from highly negative to highly positive to develop printable MSNs‐laden nanocomposite biomaterial inks. We utilized rheology as a comprehensive tool to address the matrix interactions with differently surface‐charged MSNs. Fluorescently labeled bovine serum albumin (FITC‐BSA) was used as a model protein for MSN loading, whereby negatively or neutral‐charged MSNs were found suitable to formulate FITC‐BSA‐loaded biomaterial inks of T‐CNF/GGMMA. Depending on the particles’ surface charge, FITC‐BSA showed different release profiles and preserved its stability after release. Lastly, the proof‐of‐concept to deliver large‐sized biological cargo with MSN‐laden nanocomposite biomaterial inks was established via the 3D printing technique.","PeriodicalId":74238,"journal":{"name":"Nano select : open access","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano select : open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nano.202300097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multifunctional biomaterial inks are in high demand for adapting hydrogels in biomedical applications through three‐dimensional (3D) printing. Our previously developed xeno‐free system consisting of anionic cellulose nanofibers (T‐CNF) and methacrylated galactoglucomannan (GGMMA) as a photo(bio)polymer provides high‐performance ink fidelity in extrusion‐based 3D printing. The fusion between nanoparticles and this biomaterial‐ink system is a promising yet challenging avenue worth exploring, due to the colloidal stability of T‐CNF being sensitive to electrostatic interactions. Mesoporous silica nanoparticles (MSNs), with their robust ceramic matrix and fine‐tunable surface chemistries, are well‐established nanocarriers for different biologicals. Here, we fabricated MSNs with different surface modifications resulting in a net surface charge ranging from highly negative to highly positive to develop printable MSNs‐laden nanocomposite biomaterial inks. We utilized rheology as a comprehensive tool to address the matrix interactions with differently surface‐charged MSNs. Fluorescently labeled bovine serum albumin (FITC‐BSA) was used as a model protein for MSN loading, whereby negatively or neutral‐charged MSNs were found suitable to formulate FITC‐BSA‐loaded biomaterial inks of T‐CNF/GGMMA. Depending on the particles’ surface charge, FITC‐BSA showed different release profiles and preserved its stability after release. Lastly, the proof‐of‐concept to deliver large‐sized biological cargo with MSN‐laden nanocomposite biomaterial inks was established via the 3D printing technique.