{"title":"On a conjecture of M. R. Murty and V. K. Murty","authors":"Yuchen Ding","doi":"10.4153/S0008439522000650","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$\\omega ^*(n)$\n be the number of primes p such that \n$p-1$\n divides n. Recently, M. R. Murty and V. K. Murty proved that \n$$ \\begin{align*}x(\\log\\log x)^3\\ll\\sum_{n\\le x}\\omega^*(n)^2\\ll x\\log x.\\end{align*} $$\n They further conjectured that there is some positive constant C such that \n$$ \\begin{align*}\\sum_{n\\le x}\\omega^*(n)^2\\sim Cx\\log x,\\end{align*} $$\n as \n$x\\rightarrow \\infty $\n . In this short note, we give the correct order of the sum by showing that \n$$ \\begin{align*}\\sum_{n\\le x}\\omega^*(n)^2\\asymp x\\log x.\\end{align*} $$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let
$\omega ^*(n)$
be the number of primes p such that
$p-1$
divides n. Recently, M. R. Murty and V. K. Murty proved that
$$ \begin{align*}x(\log\log x)^3\ll\sum_{n\le x}\omega^*(n)^2\ll x\log x.\end{align*} $$
They further conjectured that there is some positive constant C such that
$$ \begin{align*}\sum_{n\le x}\omega^*(n)^2\sim Cx\log x,\end{align*} $$
as
$x\rightarrow \infty $
. In this short note, we give the correct order of the sum by showing that
$$ \begin{align*}\sum_{n\le x}\omega^*(n)^2\asymp x\log x.\end{align*} $$
摘要设$\omega^*(n)$是素数p的个数,使得$p-1$除n。最近,M.R.Murty和V.K.Murty证明了$$\boot{align*}x(\log\logx)^3\lll\sum_{n\le x}\omega^*(n x\rightarrow\infty$。在这个简短的注释中,我们给出了和的正确顺序,通过显示$$\ begin{align*}\sum_{n\le x}\omega^*(n)^2 \symp x \log x \end{align*}$$