Density of random subsets and applications to group theory

IF 0.6 2区 数学 Q3 MATHEMATICS
Tsung-Hsuan Tsai
{"title":"Density of random subsets and applications to group theory","authors":"Tsung-Hsuan Tsai","doi":"10.4171/jca/63","DOIUrl":null,"url":null,"abstract":"Developing an idea of M. Gromov in [5] 9.A, we study the intersection formula for random subsets with density. The density of a subset A in a finite set E is defined by densA := log|E|(|A|). The aim of this article is to give a precise meaning of Gromov’s intersection formula: \"Random subsets\" A and B of a finite set E satisfy dens(A∩B) = densA+densB−1. As an application, we exhibit a phase transition phenomenon for random presentations of groups at density λ/2 for any 0 < λ < 1, characterizing the C(λ)-small cancellation condition. We also improve an important result of random groups by G. Arzhantseva and A. Ol’shanskii in [2] from density 0 to density 0 ≤ d < 1 120m2 ln(2m) .","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/63","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Developing an idea of M. Gromov in [5] 9.A, we study the intersection formula for random subsets with density. The density of a subset A in a finite set E is defined by densA := log|E|(|A|). The aim of this article is to give a precise meaning of Gromov’s intersection formula: "Random subsets" A and B of a finite set E satisfy dens(A∩B) = densA+densB−1. As an application, we exhibit a phase transition phenomenon for random presentations of groups at density λ/2 for any 0 < λ < 1, characterizing the C(λ)-small cancellation condition. We also improve an important result of random groups by G. Arzhantseva and A. Ol’shanskii in [2] from density 0 to density 0 ≤ d < 1 120m2 ln(2m) .
随机子集的密度及其在群论中的应用
发展了M.Gromov在[5]9.A中的思想,我们研究了具有密度的随机子集的交集公式。有限集合E中子集a的密度由densA:=log|E|(|a|)定义。本文的目的是给出Gromov交集公式的一个精确含义:有限集E的“随机子集”a和B满足dens(a≠B)=densA+densB−1。作为一个应用,我们展示了密度为λ/2的群在任何0<λ<1时的随机呈现的相变现象,表征了C(λ)-小消去条件。我们还改进了G.Arzhantseva和A.Ol’shanskii在[2]中随机分组的一个重要结果,从密度0到密度0≤d<1 120m2 ln(2m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信