{"title":"Optimal decay rate for higher–order derivatives of solution to the 3D compressible quantum magnetohydrodynamic model","authors":"Juan Wang, Yinghui Zhang","doi":"10.1515/anona-2021-0219","DOIUrl":null,"url":null,"abstract":"Abstract We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H5 × H4 × H4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{11} \\over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {5 \\over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {9 \\over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{13} \\over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{13} \\over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0219","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H5 × H4 × H4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{11} \over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\rm{rate}}\,{(1 + t)^{- {5 \over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\rm{rate}}\,{(1 + t)^{- {9 \over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].