Optimal decay rate for higher–order derivatives of solution to the 3D compressible quantum magnetohydrodynamic model

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Juan Wang, Yinghui Zhang
{"title":"Optimal decay rate for higher–order derivatives of solution to the 3D compressible quantum magnetohydrodynamic model","authors":"Juan Wang, Yinghui Zhang","doi":"10.1515/anona-2021-0219","DOIUrl":null,"url":null,"abstract":"Abstract We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H5 × H4 × H4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{11} \\over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {5 \\over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {9 \\over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{13} \\over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{13} \\over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0219","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H5 × H4 × H4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{11} \over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\rm{rate}}\,{(1 + t)^{- {5 \over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\rm{rate}}\,{(1 + t)^{- {9 \over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].
三维可压缩量子磁流体力学模型解的高阶导数的最优衰减率
摘要本文研究了H5 × H4 × H4框架下可压缩粘性量子磁流体力学模型三维Cauchy问题强解的高阶空间导数的最优衰减率,主要新颖之处有三点:首先,我们证明了解的四阶空间导数在L2-rate (1+t)-114 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{{11} \ / 4}}}处收敛于零,这与热方程之一相同,并且特别快于L2-rate (1+t)-54 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{5 \ / 4}}}}。Angew。数学。理论物理。Angew。数学。理论物理。[j].农业科学,2016,31(1):1 - 4。其次,我们证明了密度ρ的五阶空间导数在L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{{13} \ / 4}}下收敛于零,这与热方程的收敛速度相同,并且比普徐[Z]的收敛速度更快。Angew。数学。理论物理。中国农业科学,68:1,2017]。Angew。数学。理论物理。[j].农业科学,2016,31(1):1 - 4。第三,我们证明了速度u和磁B的四阶空间导数的高频部分在L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{{13} \ / 4}}}处收敛于零,这比它们本身更快,与普徐[Z]相比是全新的。Angew。数学。理论物理。中国农业科学,68:1,2017]。Angew。数学。理论物理。[j].农业科学,2016,31(1):1 - 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信