A. Royer, F. Dominé, A. Roy, A. Langlois, N. Marchand, Gautier Davesne
{"title":"New Northern Snowpack Classification Linked to Vegetation Cover on a Latitudinal Mega-Transect Across Northeastern Canada","authors":"A. Royer, F. Dominé, A. Roy, A. Langlois, N. Marchand, Gautier Davesne","doi":"10.1080/11956860.2021.1898775","DOIUrl":null,"url":null,"abstract":"ABSTRACT Changes in mass, extent, duration, and physical properties of snow are key elements for studying associated climate change feedbacks in northern regions. In this study, we analyzed snowpack physical properties along a ‘mega’ transect from 47°N to 83°N (4,000 km) in northeastern Canada, which includes marked transitions between ecozones from boreal forest to subarctic and arctic ecosystems. Our unique dataset of 391 detailed snowpits acquired over the last 20 years, complemented with snow data from weather stations, shows that snowpack properties such as snow water equivalent, snow depth, density, grain size and basal depth hoar fraction (DHF) are strongly linked to vegetation type. Based on these results, we propose an updated classification of snow types in three classes: boreal forest snow (47–58°N), tundra snow (58–74°N) and polar desert snow (74–83°N), which is more appropriate to the study area than the general north hemisphere classification commonly used. We also show that shrub presence along the transect contributes to a significant increase in DHF development which contributes most strongly to the thermal insulation properties of the snowpack. Overall, our analysis suggests that snow–vegetation interactions have a positive feedback effect on warming at northern latitudes.","PeriodicalId":51030,"journal":{"name":"Ecoscience","volume":"28 1","pages":"225 - 242"},"PeriodicalIF":1.3000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/11956860.2021.1898775","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecoscience","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/11956860.2021.1898775","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 21
Abstract
ABSTRACT Changes in mass, extent, duration, and physical properties of snow are key elements for studying associated climate change feedbacks in northern regions. In this study, we analyzed snowpack physical properties along a ‘mega’ transect from 47°N to 83°N (4,000 km) in northeastern Canada, which includes marked transitions between ecozones from boreal forest to subarctic and arctic ecosystems. Our unique dataset of 391 detailed snowpits acquired over the last 20 years, complemented with snow data from weather stations, shows that snowpack properties such as snow water equivalent, snow depth, density, grain size and basal depth hoar fraction (DHF) are strongly linked to vegetation type. Based on these results, we propose an updated classification of snow types in three classes: boreal forest snow (47–58°N), tundra snow (58–74°N) and polar desert snow (74–83°N), which is more appropriate to the study area than the general north hemisphere classification commonly used. We also show that shrub presence along the transect contributes to a significant increase in DHF development which contributes most strongly to the thermal insulation properties of the snowpack. Overall, our analysis suggests that snow–vegetation interactions have a positive feedback effect on warming at northern latitudes.
期刊介绍:
Écoscience, is a multidisciplinary journal that covers all aspects of ecology. The journal welcomes submissions in English or French and publishes original work focusing on patterns and processes at various temporal and spatial scales across different levels of biological organization. Articles include original research, brief communications and reviews.